scholarly journals Acoustic emission based investigation on the effect of temperature and hybridization on drop weight impact and post-impact residual strength of hemp and basalt fibres reinforced polymer composite laminates

2019 ◽  
Vol 173 ◽  
pp. 106962 ◽  
Author(s):  
C. Suresh Kumar ◽  
Mohamad Fotouhi ◽  
Milad Saeedifar ◽  
V. Arumugam
2019 ◽  
Author(s):  
Kristian Gjerrestad Andersen ◽  
Gbanaibolou Jombo ◽  
Sikiru Oluwarotimi Ismail ◽  
Segun Adeyemi ◽  
Rajini N ◽  
...  

2018 ◽  
Author(s):  
DC Pham

Composite laminates are susceptible to out-of-plane impact loads due to the lack of reinforcement in the through-thickness direction. Unlike the localized damage induced by a high velocity impact where the incident energy is dissipated near a contact area, low velocity impact damage involves multiple failure mechanisms such as matrix cracking, fiber breakage, and widespread interface delaminations. Depending on the extent of damage, significant reduction in the load-bearing capability of the structure has been observed. The prediction of composite impact damage resistance by a reliable progressive damage analysis tool is essential to reduce intensive and expensive certification tests at structural level. In this work, an enhanced explicit 3D damage model is implemented via VUMAT in Abaqus to perform a drop-weight impact simulation of a [454/04/-454/904]s Hexply AS4/8552 composite laminate. The impact-induced damage and its extent are captured by a 3D Continuum Damage Model (CDM) coupled with an energy driven failure mechanism. The developed module provides a unified solution process for the impact response prediction followed by the residual strength prediction under compression within an explicit solver. Two examples are selected to demonstrate the capability of the progressive failure analysis under dynamic and static loading: 1) a drop-weight test; and 2) an open-hole tension test. Numerical predictions from the developed VUMAT are compared with the test data and predictions using the open source CompDam code developed by NASA.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Dongliang Zhang ◽  
Xiaoyan Zhang ◽  
Yunrong Luo ◽  
Qingyuan Wang

The basalt fiber-reinforced polymer (epoxy resin), which has even better mechanical properties than glass fiber-reinforced polymer, is a good choice for making FML (fiber-metal laminate) composite. Herein, drop-weight impact tests of basalt fiber-based FMLs (called BFMLs) were conducted in the INSTON 9520HV testing machine to investigate the low-velocity impact properties of BFMLs. The specimens were of two diameters. And the impactors had two sizes of nose, dropping from different heights. The load-deflection behavior of aluminum sheet, BFRP (basalt fiber-reinforced polymer) panel, and BFML plate and their energy dissipation patterns during impact perforation were obtained. The test results showed that aluminum alloy sheet and BFMLs had no strain rate effect, while BFRP did. It was also concluded that the behavior of the thick BFML plate was clearly affected by debonding between aluminum sheet and BFRP panel, while the behavior of the thin BFML plate was controlled by membrane force. In failure analysis, it was found that the deformation and breakage of BFRP are the main contributions to energy absorption of BFMLs which counts for more than 75%. The energy absorbed by the aluminum sheet through plastic deformation and petaling is about 20%, while the energy absorbed in debonding can be ignored. In addition, with the help of ABAQUS simulation, it was found that decreasing the value of MVF (metal volume fraction) can increase the specific energy absorption of BFMLs, but the ductility of BFMLs may decrease.


Sign in / Sign up

Export Citation Format

Share Document