Enhancement by sodium on the growth of the xerophyte Zygophyllum xanthoxylum is achieved by maintaining efficient photosynthesis when stomatal aperture is minimized

Author(s):  
Jie-Jun Xi ◽  
Si-Yuan Huang ◽  
Wei-Jie Liu ◽  
Shu He ◽  
Yuhui Chen ◽  
...  
2021 ◽  
Vol 22 (9) ◽  
pp. 4663
Author(s):  
Aleksandra Orzechowska ◽  
Martin Trtílek ◽  
Krzysztof Michał Tokarz ◽  
Renata Szymańska ◽  
Ewa Niewiadomska ◽  
...  

A non-destructive thermal imaging method was used to study the stomatal response of salt-treated Arabidopsis thaliana plants to excessive light. The plants were exposed to different levels of salt concentrations (0, 75, 150, and 220 mM NaCl). Time-dependent thermograms showed the changes in the temperature distribution over the lamina and provided new insights into the acute light-induced temporary response of Arabidopsis under short-term salinity. The initial response of plants, which was associated with stomatal aperture, revealed an exponential growth in temperature kinetics. Using a single-exponential function, we estimated the time constants of thermal courses of plants exposed to acute high light. The saline-induced impairment in stomatal movement caused the reduced stomatal conductance and transpiration rate. Limited transpiration of NaCl-treated plants resulted in an increased rosette temperature and decreased thermal time constants as compared to the controls. The net CO2 assimilation rate decreased for plants exposed to 220 mM NaCl; in the case of 75 mM NaCl treatment, an increase was observed. A significant decline in the maximal quantum yield of photosystem II under excessive light was noticeable for the control and NaCl-treated plants. This study provides evidence that thermal imaging as a highly sensitive technique may be useful for analyzing the stomatal aperture and movement under dynamic environmental conditions.


1995 ◽  
Vol 108 (3) ◽  
pp. 1161-1170 ◽  
Author(s):  
N. Ilan ◽  
N. Moran ◽  
A. Schwartz

2008 ◽  
Vol 27 (10) ◽  
pp. 1655-1665 ◽  
Author(s):  
Xin-Qi Gao ◽  
Jing Chen ◽  
Peng-Cheng Wei ◽  
Fei Ren ◽  
Jia Chen ◽  
...  

1931 ◽  
Vol 6 (4) ◽  
pp. 715-719 ◽  
Author(s):  
Eric Ashby
Keyword(s):  

2022 ◽  
Vol 23 (2) ◽  
pp. 686
Author(s):  
Sifan Sun ◽  
Xu Li ◽  
Shaopei Gao ◽  
Nan Nie ◽  
Huan Zhang ◽  
...  

WRKY transcription factors are one of the important families in plants, and have important roles in plant growth, abiotic stress responses, and defense regulation. In this study, we isolated a WRKY gene, ItfWRKY70, from the wild relative of sweet potato Ipomoea trifida (H.B.K.) G. Don. This gene was highly expressed in leaf tissue and strongly induced by 20% PEG6000 and 100 μM abscisic acid (ABA). Subcellar localization analyses indicated that ItfWRKY70 was localized in the nucleus. Overexpression of ItfWRKY70 significantly increased drought tolerance in transgenic sweet potato plants. The content of ABA and proline, and the activity of SOD and POD were significantly increased, whereas the content of malondialdehyde (MDA) and H2O2 were decreased in transgenic plants under drought stress. Overexpression of ItfWRKY70 up-regulated the genes involved in ABA biosynthesis, stress-response, ROS-scavenging system, and stomatal aperture in transgenic plants under drought stress. Taken together, these results demonstrated that ItfWRKY70 plays a positive role in drought tolerance by accumulating the content of ABA, regulating stomatal aperture and activating the ROS scavenging system in sweet potato.


2006 ◽  
Vol 33 (11) ◽  
pp. 1037 ◽  
Author(s):  
Dirk Büssis ◽  
Uritza von Groll ◽  
Joachim Fisahn ◽  
Thomas Altmann

Stomatal density of transgenic Arabidopsis thaliana plants over-expressing the SDD1 (stomatal density and distribution) gene was reduced to 40% and in the sdd1-1 mutant increased to 300% of the wild type. CO2 assimilation rate and stomatal conductance of over-expressers and the sdd1-1 mutant were unchanged compared with wild types when measured under the light conditions the plants were exposed to during growth. Lower stomatal density was compensated for by increased stomatal aperture and conversely, increased stomatal density was compensated for by reduced stomatal aperture. At high light intensities the assimilation rates and stomatal conductance of SDD1 over-expressers were reduced to 80% of those in wild type plants. Areas beneath stomata and patches lacking stomata were analysed separately. In areas without stomata, maximum fluorescence yield (Fv / Fm) and quantum yield of photosystem II (Φ PSII) were significantly lower than in areas beneath stomata. In areas beneath stomata, Fv / Fm and Φ PSII were identical to levels measured in wild type leaves. At high light intensities over-expressers showed decreased photochemical quenching (qP) compared with wild types. However, the decrease of qP was significantly stronger in areas without stomata than in mesophyll areas beneath stomata. At high CO2 partial pressures and high light intensities CO2 assimilation rates of SDD1 over-expressers did not reach wild type levels. These results indicate that photosynthesis in SDD1 over-expressers was reduced because of limiting CO2 in areas furthest from stomata at high light.


2020 ◽  
Vol 71 (14) ◽  
pp. 4285-4297 ◽  
Author(s):  
Qingfang Lin ◽  
Song Wang ◽  
Yihang Dao ◽  
Jianyong Wang ◽  
Kai Wang

Abstract Transpiration occurs through stomata. The alteration of stomatal apertures in response to drought stress is an important process associated with water use efficiency (WUE). Trehalose-6-phosphate phosphatase (TPP) family genes have been reported to participate in adjustment of stomatal aperture. However, there have been no reports of the trehalose metabolism pathway genes improving WUE, and the upstream signalling pathway modulating these genes is not clear. Here, we demonstrate that a member of the TPP gene family, AtTPPI, confers drought resistance and improves WUE by decreasing stomatal apertures and improving root architecture. The reduced expression of AtTPPI caused a drought-sensitive phenotype, while its overexpression significantly increased drought tolerance. Abscisic acid (ABA)-induced stomatal closure experiments confirmed that AtTPPI mutation increased the stomatal aperture compared with that of wild-type plants; in contrast, overexpression plants had smaller stomatal apertures than those of wild-type plants. Moreover, AtTPPI mutation also caused stunted primary root length and compromised auxin transport, while overexpression plants had longer primary root lengths. Yeast one-hybrid assays showed that ABA-responsive element-binding factor1 (ABF1), ABF2, and ABF4 directly regulated AtTPPI expression. In summary, the way in which AtTPPI responds to drought stress suggests that AtTPPI-mediated stomatal regulation is an important mechanism to cope with drought stress and improve WUE.


Sign in / Sign up

Export Citation Format

Share Document