scholarly journals Co-effect of cadmium and iron oxide nanoparticles on plasmid-mediated conjugative transfer of antibiotic resistance genes

2021 ◽  
Vol 152 ◽  
pp. 106453
Author(s):  
Qiang Pu ◽  
Xiao-Ting Fan ◽  
An-Qi Sun ◽  
Ting Pan ◽  
Hu Li ◽  
...  
Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1313
Author(s):  
Ning Zhang ◽  
Xiang Liu ◽  
Bing Li ◽  
Limei Han ◽  
Xuejiao Ma ◽  
...  

Antibiotic resistance is currently a major global public health issue. In particular, the emergence and transfer of antibiotic resistance genes (ARGs) is a matter of primary concern. This study presented a method for ruling out the transfer of naked DNA (plasmid RP4 lysed from donor cells) during the cell-to-cell conjugation, using a modified “U-tube”. A series of gene transfer assays was conducted in both flask and modified U-tube, using Pseudomonas putida KT2440 (P. putida (RP4)) harboring the RP4 plasmid as the donor strain, Escherichia coli (E. coli, ATCC 25922) in pure culture as sole recipient, and bacteria from reclaimed water microcosms as multi-recipients. The verification experiments showed that the U-tube device could prevent direct contact of bacteria without affecting the exchange of free plasmid. In the experiments involving a sole recipient, the transconjugants were obtained in flask samples, but not in modified U-tube. Furthermore, in experiments involving multi-recipients, transfer of naked DNA in the modified U-tube accounted for 5.18% in the transfer frequency of the flask transfer experiment. The modified U-tube proved to be useful for monitoring the interference of naked DNA in the research of conjugative transfer and calculating the exact conjugative transfer rate. This device is identified as a promising candidate for distinguishing different gene transfers in practical application because of its convenient use and easy and simple manufacture.


2019 ◽  
Vol 6 (2) ◽  
pp. 456-466 ◽  
Author(s):  
Lin Qi ◽  
Yuan Ge ◽  
Tian Xia ◽  
Ji-Zheng He ◽  
Congcong Shen ◽  
...  

This study demonstrates that rare earth oxide nanoparticles can enhance soil microbial antibiotic resistance by inducing the enrichment and spread of antibiotic resistance genes in soil microbial communities.


2004 ◽  
Vol 186 (17) ◽  
pp. 5945-5949 ◽  
Author(s):  
John W. Beaber ◽  
Matthew K. Waldor

ABSTRACT Transfer of SXT, a Vibrio cholerae-derived integrating conjugative element that encodes multiple antibiotic resistance genes, is repressed by SetR, a λ434 cI-related repressor. Here we identify divergent promoters between s086 and setR that drive expression of the regulators of SXT transfer. One transcript encodes the activators of transfer, setC and setD. The second transcript codes for SetR and, like the cI transcript of lambda, is leaderless. SetR binds to four operators located between setR and s086; the locations and relative affinities of these sites suggest a model for regulation of SXT transfer.


2020 ◽  
Author(s):  
David Calderón-Franco ◽  
Apoorva Seeram ◽  
Gertjan Medema ◽  
Mark C. M. van Loosdrecht ◽  
David G. Weissbrodt

AbstractDisinfection of treated wastewater in wastewater treatment plants (WWTPs) is used to minimize emission of coliforms, pathogens, and antibiotic resistant bacteria (ARB) in the environment. However, the fate of free-floating extracellular DNA (eDNA) that do carry antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) is overlooked. Water technologies are central to urban and industrial ecology for sanitation and resource recovery. Biochar produced by pyrolysis of sewage sludge and iron-oxide-coated sands recovered as by-product of drinking water treatment were tested as adsorbents to remove ARGs and MGEs from WWTP effluent. DNA adsorption properties and materials applicability were studied in batch and up-flow column systems at bench scale. Breakthrough curves were measured with ultrapure water and treated wastewater at initial DNA concentrations of 0.1-0.5 mg mL-1 and flow rates of 0.1-0.5 mL min-1. Batch tests with treated wastewater indicated that the adsorption profiles of biochar and iron-oxide coated sand followed a Freundlich isotherm, suggesting a multilayer adsorption of nucleic acids. Sewage-sludge biochar exhibited higher DNA adsorption capacity (1 mg g-1) and longer saturation breakthrough times (4 to 10 times) than iron-oxide coated sand (0.2 mg g-1). The removal of a set of representative ARGs and MGEs was measured by qPCR comparing the inlet and outlet of the plug-flow column fed with treated wastewater. ARGs and MGEs present as free-floating eDNA were adsorbed by sewage-sludge biochar at 85% and iron-oxide coated sand at 54%. From the environmental DNA consisting of the free-floating extracellular DNA plus the intracellular DNA of the cells present in the effluent water, 97% (sewage-sludge biochar) and 66% (iron-oxide coated sand) of the tested genes present were removed. Sewage-sludge biochar displayed interesting properties to minimize the spread of antimicrobial resistances to the aquatic environment while strengthening the role of WWTPs as resource recovery factories.Graphical abstractHighlightsSewage-sludge biochar and iron oxide coated sands were tested to adsorb DNA and cells.Biochar removed 97% of genes tested from environmental DNA of unfiltered effluent.85% of ARGs and MGEs of free-floating extracellular DNA were retained by biochar.Biochar is a WWTP by-product that can be re-used for public health sanitation.


mBio ◽  
2022 ◽  
Author(s):  
Lingxian Yi ◽  
Romain Durand ◽  
Frédéric Grenier ◽  
Jun Yang ◽  
Kaiyang Yu ◽  
...  

The spread of clinically relevant antibiotic resistance genes is often linked to the dissemination of epidemic plasmids. However, the underlying molecular mechanisms contributing to the successful spread of epidemic plasmids remain unclear.


Sign in / Sign up

Export Citation Format

Share Document