Biotransformation of arsenite and bacterial aox activity in drinking water produced from surface water of floating houses: Arsenic contamination in Cambodia

2015 ◽  
Vol 206 ◽  
pp. 315-323 ◽  
Author(s):  
Jin-Soo Chang
2003 ◽  
Vol 3 (5-6) ◽  
pp. 15-22
Author(s):  
P. Kouadio ◽  
M. Tétrault

Three colored surface water nanofiltration pilot-scale projects were conducted in the province of Quebec (eastern Canada), between November 2000 and March 2002, by the company H2O Innovation (2000) inc., for the municipalities of Lac Bouchette, Latulipe-et-Gaboury and Charlesbourg (now part of Quebec City). Results indicated that nanofiltration permeate quality has an advance on present drinking water regulation standard in Quebec, but important membrane fouling occurred. Fouling can be controlled by pretreatment and optimization of the operating conditions.


2006 ◽  
Vol 6 (2) ◽  
pp. 47-53 ◽  
Author(s):  
D. Simazaki ◽  
M. Asami ◽  
T. Nishimura ◽  
S. Kunikane ◽  
T. Aizawa ◽  
...  

Nationwide surveys of 1,4-dioxane and methyl-t-butyl ether (MTBE) levels in raw water used for the drinking water supply were conducted at 91 water treatment plants in Japan in 2001 and 2002, prior to the revision of the drinking water quality standards. 1,4-dioxane was widely and continuously detected in raw water samples and its occurrence was more frequent and its concentrations higher in groundwater than in surface water. However, its maximum concentration in raw water was much lower than its new standard value (50 μg/L), which was determined as a level of 10−5 excessive cancer risk to humans. Trace levels of MTBE were also detected in several surface water samples.


1994 ◽  
Vol 30 (10) ◽  
pp. 221-227 ◽  
Author(s):  
Jordi Martín-Alonso

The Llobregat is a 156 km long river, which supplies 35% of the Barcelona's drinking water needs from the Sant Joan Despí Water Treatment Plant. Since the establishment of the Salt Mine Works in the Llobregat basin in 1923, a progressive salinization of the water sources has been recorded. The operation of the Brine Collector, as a public work carried out by Aigües de Barcelona (AGBAR), started in 1989; it enabled a very significant improvement in the quality of the surface water used for drinking-water production.


2017 ◽  
Author(s):  
Klaus Neumann ◽  
◽  
Kirsten N. Nicholson ◽  
Carolyn B. Dowling ◽  
Leah Wood ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ananda Tiwari ◽  
Anna-Maria Hokajärvi ◽  
Jorge Santo Domingo ◽  
Michael Elk ◽  
Balamuralikrishna Jayaprakash ◽  
...  

Abstract Background Rivers and lakes are used for multiple purposes such as for drinking water (DW) production, recreation, and as recipients of wastewater from various sources. The deterioration of surface water quality with wastewater is well-known, but less is known about the bacterial community dynamics in the affected surface waters. Understanding the bacterial community characteristics —from the source of contamination, through the watershed to the DW production process—may help safeguard human health and the environment. Results The spatial and seasonal dynamics of bacterial communities, their predicted functions, and potential health-related bacterial (PHRB) reads within the Kokemäenjoki River watershed in southwest Finland were analyzed with the 16S rRNA-gene amplicon sequencing method. Water samples were collected from various sampling points of the watershed, from its major pollution sources (sewage influent and effluent, industrial effluent, mine runoff) and different stages of the DW treatment process (pre-treatment, groundwater observation well, DW production well) by using the river water as raw water with an artificial groundwater recharge (AGR). The beta-diversity analysis revealed that bacterial communities were highly varied among sample groups (R = 0.92, p <  0.001, ANOSIM). The species richness and evenness indices were highest in surface water (Chao1; 920 ± 10) among sample groups and gradually decreased during the DW treatment process (DW production well; Chao1: 320 ± 20). Although the phylum Proteobacteria was omnipresent, its relative abundance was higher in sewage and industrial effluents (66–80%) than in surface water (55%). Phyla Firmicutes and Fusobacteria were only detected in sewage samples. Actinobacteria was more abundant in the surface water (≥13%) than in other groups (≤3%). Acidobacteria was more abundant in the DW treatment process (≥13%) than in others (≤2%). In total, the share of PHRB reads was higher in sewage and surface water than in the DW treatment samples. The seasonal effect in bacterial communities was observed only on surface water samples, with the lowest diversity during summer. Conclusions The low bacterial diversity and absence of PHRB read in the DW samples indicate AGR can produce biologically stable and microbiologically safe drinking water. Furthermore, the significantly different bacterial communities at the pollution sources compared to surface water and DW samples highlight the importance of effective wastewater treatment for protecting the environment and human health.


2011 ◽  
Vol 84 (1) ◽  
pp. 20-29 ◽  
Author(s):  
Kristen E. Gibson ◽  
Yayi Guo ◽  
James T. Schissler ◽  
Melissa C. Opryszko ◽  
Kellogg J. Schwab

2014 ◽  
Vol 12 (3) ◽  
pp. 484-491 ◽  
Author(s):  
Andrea Crampton ◽  
Angela T. Ragusa

Agricultural runoff into surface water is a problem in Australia, as it is in arguably all agriculturally active countries. While farm practices and resource management measures are employed to reduce downstream effects, they are often either technically insufficient or practically unsustainable. Therefore, consumers may still be exposed to agrichemicals whenever they turn on the tap. For rural residents surrounded by agriculture, the link between agriculture and water quality is easy to make and thus informed decisions about water consumption are possible. Urban residents, however, are removed from agricultural activity and indeed drinking water sources. Urban and rural residents were interviewed to identify perceptions of agriculture's impact on drinking water. Rural residents thought agriculture could impact their water quality and, in many cases, actively avoided it, often preferring tank to surface water sources. Urban residents generally did not perceive agriculture to pose health risks to their drinking water. Although there are more agricultural contaminants recognised in the latest Australian Drinking Water Guidelines than previously, we argue this is insufficient to enhance consumer protection. Health authorities may better serve the public by improving their proactivity and providing communities and water utilities with the capacity to effectively monitor and address agricultural runoff.


2001 ◽  
Vol 1 ◽  
pp. 39-43 ◽  
Author(s):  
V. Zitko

Many countries require the presence of free chlorine at about 0.1 mg/l in their drinking water supplies. For various reasons, such as cast-iron pipes or long residence times in the distribution system, free chlorine may decrease below detection limits. In such cases it is important to know whether or not the water was chlorinated or if nonchlorinated water entered the system by accident. Changes in UV spectra of natural organic matter in lakewater were used to assess qualitatively the degree of chlorination in the treatment to produce drinking water. The changes were more obvious in the first derivative spectra. In lakewater, the derivative spectra have a maximum at about 280 nm. This maximum shifts to longer wavelengths by up to 10 nm, decreases, and eventually disappears with an increasing dose of chlorine. The water treatment system was monitored by this technique for over 1 year and changes in the UV spectra of water samples were compared with experimental samples treated with known amounts of chlorine. The changes of the UV spectra with the concentration of added chlorine are presented. On several occasions, water, which received very little or no chlorination, may have entered the drinking water system. The results show that first derivative spectra are potentially a tool to determine, in the absence of residual chlorine, whether or not surface water was chlorinated during the treatment to produce potable water.


Sign in / Sign up

Export Citation Format

Share Document