Clothianidin alters leukocyte profiles and elevates measures of oxidative stress in tadpoles of the amphibian, Rana pipiens

2021 ◽  
pp. 117149
Author(s):  
Stacey A. Robinson ◽  
Ryan J. Chlebak ◽  
Sarah D. Young ◽  
Rebecca L. Dalton ◽  
Melody J. Gavel ◽  
...  
2015 ◽  
Vol 93 (1) ◽  
pp. 41-49 ◽  
Author(s):  
Dave Shutler ◽  
Andrée D. Gendron ◽  
Myriam Rondeau ◽  
David J. Marcogliese

Globally, amphibians face a variety of anthropogenic stresses that include exposure to contaminants such as agricultural pesticides. Pesticides may negatively affect amphibian immune systems, concomitantly increasing susceptibility to parasitism. We quantified nematodes and evaluated leukocyte profiles of Northern Leopard Frogs (Rana pipiens Schreber, 1782) collected from five wetlands in southwestern Quebec, Canada, that spanned a gradient of pesticide exposure. Three taxa of nematode parasites (Rhabdias ranae Walton, 1929, genus Oswaldocruzia Travassos, 1917, and genus Strongyloides Grassi, 1879) were sufficiently numerous for detailed evaluation. When all frogs were pooled, frog size was negatively correlated with nematode species richness, abundances of each of the three nematode species, and densities of three different leukocytes. When all frogs were pooled, there was strong evidence of both negative and positive associations between pairs of parasite species. However, none of the previous relationships was significant within wetlands. Our results reveal strong spatial organization of amphibian–parasite communities and illustrate the importance of controlling for sampling locale in evaluating host–parasite associations. Finally, although several response variables varied significantly among wetlands, causes of this variation did not appear to be related to variation in nematode parasitism or pesticide exposure.


Author(s):  
J. R. Ruby ◽  
R. F. Dyer ◽  
R. G. Skalko ◽  
R. F. Gasser ◽  
E. P. Volpe

An electron microscope examination of fetal ovaries has revealed that developing germ cells are connected by intercellular bridges. In this investigation several species have been studied including human, mouse, chicken, and tadpole (Rana pipiens). These studies demonstrate that intercellular connections are similar in morphology regardless of the species.Basically, all bridges are characterized by a band of electron-dense material on the cytoplasmic side of the tri-laminar membrane surrounding the connection (Fig.l). This membrane is continuous with the plasma membrane of the conjoined cells. The dense material, however, never extends beyond the limits of the bridge. Variations in the configuration of intercellular connections were noted in all ovaries studied. However, the bridges in each individual species usually exhibits one structural characteristic seldom found in the others. For example, bridges in the human ovary very often have large blebs projecting from the lateral borders whereas the sides of the connections in the mouse gonad merely demonstrate a slight convexity.


Author(s):  
J. H. Hayden

In a previous study, Allen video-enhanced constrast/differential interference constrast (AVEC-DIC) microscopy was used in conjunction with immunofluorescence microscopy to demonstrate that organelles and vesicle move in either direction along linear elements composed of microtubules. However, this study was limited in that the number of microtubules making up a linear element could not be determined. To overcome this limitation, we have used AVEC-DIC microscopy in conjunction with whole mount electron microscopy.Keratocytes from Rana pipiens were grown on glass coverslips as described elsewhere. Gold London Finder grids were Formvar- and carbon coated, and sterilized by exposure to ultraviolet light. It is important to select a Formvar film that gives a grey reflection when it is floated on water. A silver film is too thick and will detract from the image in the light microscope.


2020 ◽  
Vol 11 (10) ◽  
pp. 8547-8559
Author(s):  
Hongjing Zhao ◽  
Yu Wang ◽  
Mengyao Mu ◽  
Menghao Guo ◽  
Hongxian Yu ◽  
...  

Antibiotics are used worldwide to treat diseases in humans and other animals; most of them and their secondary metabolites are discharged into the aquatic environment, posing a serious threat to human health.


2019 ◽  
Vol 476 (24) ◽  
pp. 3705-3719 ◽  
Author(s):  
Avani Vyas ◽  
Umamaheswar Duvvuri ◽  
Kirill Kiselyov

Platinum-containing drugs such as cisplatin and carboplatin are routinely used for the treatment of many solid tumors including squamous cell carcinoma of the head and neck (SCCHN). However, SCCHN resistance to platinum compounds is well documented. The resistance to platinum has been linked to the activity of divalent transporter ATP7B, which pumps platinum from the cytoplasm into lysosomes, decreasing its concentration in the cytoplasm. Several cancer models show increased expression of ATP7B; however, the reason for such an increase is not known. Here we show a strong positive correlation between mRNA levels of TMEM16A and ATP7B in human SCCHN tumors. TMEM16A overexpression and depletion in SCCHN cell lines caused parallel changes in the ATP7B mRNA levels. The ATP7B increase in TMEM16A-overexpressing cells was reversed by suppression of NADPH oxidase 2 (NOX2), by the antioxidant N-Acetyl-Cysteine (NAC) and by copper chelation using cuprizone and bathocuproine sulphonate (BCS). Pretreatment with either chelator significantly increased cisplatin's sensitivity, particularly in the context of TMEM16A overexpression. We propose that increased oxidative stress in TMEM16A-overexpressing cells liberates the chelated copper in the cytoplasm, leading to the transcriptional activation of ATP7B expression. This, in turn, decreases the efficacy of platinum compounds by promoting their vesicular sequestration. We think that such a new explanation of the mechanism of SCCHN tumors’ platinum resistance identifies novel approach to treating these tumors.


2004 ◽  
Vol 71 ◽  
pp. 121-133 ◽  
Author(s):  
Ascan Warnholtz ◽  
Maria Wendt ◽  
Michael August ◽  
Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.


2001 ◽  
Vol 120 (5) ◽  
pp. A217-A217
Author(s):  
C SPADA ◽  
S SANTINI ◽  
F FOSCHIA ◽  
M PANDOLFI ◽  
V PERRI ◽  
...  

2001 ◽  
Vol 120 (5) ◽  
pp. A116-A116
Author(s):  
S ALEYNIK ◽  
M ALEYNIK ◽  
C LIEBER
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document