Reduction in VOC emissions by intermittent aeration in bioreactor landfills with gas-water joint regulation

2021 ◽  
Vol 290 ◽  
pp. 118059
Author(s):  
Yi-Xuan Chu ◽  
Jing Wang ◽  
Guangming Tian ◽  
Ruo He
2022 ◽  
Vol 139 ◽  
pp. 309-320
Author(s):  
Yi-Xuan Chu ◽  
Jing Wang ◽  
Lei Jiang ◽  
Guangming Tian ◽  
Ruo He

2008 ◽  
Vol 3 (3) ◽  
pp. 14-20
Author(s):  
Sayavur I. Bakhtiyarov ◽  
◽  
Panakhov G.M ◽  
Eldar M. Abbasov ◽  
◽  
...  
Keyword(s):  

2004 ◽  
Vol 39 (3) ◽  
pp. 223-229 ◽  
Author(s):  
Mostafa A. Warith ◽  
Graham J. Takata

Abstract Municipal solid waste (MSW) is slow to stabilize under conventional anaerobic landfill conditions, demanding long-term monitoring and pollution control. Provision of aerobic conditions offers several advantages including accelerated leachate stabilization, increased landfill airspace recovery and a reduction in greenhouse gas emissions. Air injection was applied over 130 days to bench-scale bioreactors containing fresh and aged MSW representative of newly constructed and pre-existing landfill conditions. In the fresh MSW simulation bioreactors, aeration reduced the average time to stabilization of leachate pH by 46 days, TSS by 42 days, TDS by 84 days, BOD5 by 46 days and COD by 32 days. In addition, final leachate concentrations were consistently lower in aerated test cells. There was no indication of a gradual decrease in the concentration of ammonia, and it is likely this high ammonia concentration would continue to be problematic in bioreactor landfill applications. This study focussed only on biodegradability of organics in the solid waste. The concentrations of the nonreactive or conservative substances such as chloride and/or heavy metals remain in the bioreactor landfills due to the continuous recirculation of leachate. The results of this study demonstrate the potential for air injection to accelerate stabilization of municipal solid waste, with greatest influence on fresh waste with a high biodegradable organic fraction.


1996 ◽  
Vol 34 (3-4) ◽  
pp. 413-420
Author(s):  
Y. C. Liao ◽  
D. J. Lee

Transient model of oxygen transfer rate in a sequencing batch reactor is derived and solved numerically. The dissolved oxygen response under several conditions is analyzed. Effects of operational parameters and liquid bath height are studied. When with short, intermittent aeration periods, the transient effects on oxygen transfer rate may be substantial and should be taken into considerations. An example considering bioreaction is also given.


Author(s):  
Kurian Joseph ◽  
S. Esakku ◽  
R. Nagendran
Keyword(s):  

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3961
Author(s):  
Hussein Al-Hazmi ◽  
Xi Lu ◽  
Dominika Grubba ◽  
Joanna Majtacz ◽  
Przemysław Kowal ◽  
...  

The short-term effects of temperature on deammonification sludge were evaluated in a laboratory-scale sequencing batch reactor (SBR). Mathematical modeling was used for further evaluations of different intermittent aeration strategies for achieving high and stable deammonification performance at decreasing temperatures. As for the biomass cultivated at high temperatures (e.g., 30 °C), a higher temperature dependency (the adjusted Arrhenius coefficient θ for 11–17 °C = 1.71 vs. θ for 17–30 °C = 1.12) on the specific anammox growth rates was found at lower temperatures (11–17 °C) in comparison with higher temperatures (17–30 °C). Further evaluations of recovering the nitrogen removal efficiency at decreasing temperatures with the mathematical model by modifying the intermittent aeration strategies (aeration frequency (F) and the ratio (R) between non-aerated (non-aer) phase and aerated (aer) phase durations) indicated that intermittent aeration with a prolonged non-aerated phase (e.g., R ≥ 4 regardless of F value) would help to maintain high and stable deammonification performance (~80%) at decreasing temperatures (14–22 °C). Extending the non-aerated phases (increasing R) and reducing the frequency (F) of off/on phase changes have a positive effect on increasing energy savings, leading to increasing interest in this method.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Y. Song ◽  
H. Chun

AbstractVolatile organic compounds (VOCs) are secondary pollutant precursors having adverse impacts on the environment and human health. Although VOC emissions, their sources, and impacts have been investigated, the focus has been on large-scale industrial sources or indoor environments; studies on relatively small-scale enterprises (e.g., auto-repair workshops) are lacking. Here, we performed field VOC measurements for an auto-repair painting facility in Korea and analyzed the characteristics of VOCs emitted from the main painting workshop (top coat). The total VOC concentration was 5069–8058 ppb, and 24–35 species were detected. The VOCs were mainly identified as butyl acetate, toluene, ethylbenzene, and xylene compounds. VOC characteristics differed depending on the paint type. Butyl acetate had the highest concentration in both water- and oil-based paints; however, its concentration and proportion were higher in the former (3256 ppb, 65.5%) than in the latter (2449 ppb, 31.1%). Comparing VOC concentration before and after passing through adsorption systems, concentrations of most VOCs were lower at the outlets than the inlets of the adsorption systems, but were found to be high at the outlets in some workshops. These results provide a theoretical basis for developing effective VOC control systems and managing VOC emissions from auto-repair painting workshops.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 210
Author(s):  
Tang Liu ◽  
Shufeng Liu ◽  
Shishi He ◽  
Zhichao Tian ◽  
Maosheng Zheng

To explore the main behavior and mechanism of minimizing nitrous oxide (N2O) emission through intermittent aeration during wastewater treatment, two lab-scale sequencing batch reactors operated at intermittently aerated mode (SBR1), and continuously aerated mode (SBR2) were established. Compared with SBR2, the intermittently aerated SBR1 reached not only a higher total nitrogen removal efficiency (averaged 93.5%) but also a lower N2O-emission factor (0.01–0.53% of influent ammonia), in which short-cut nitrification and denitrification were promoted. Moreover, less accumulation and consumption of polyhydroxyalkanoates, a potential endogenous carbon source promoting N2O emission, were observed in SBR1. Batch experiments revealed that nitrifier denitrification was the major pathway generating N2O while heterotrophic denitrification played as a sink of N2O, and SBR1 embraced a larger N2O-mitigating capability. Finally, quantitative polymerase chain reaction results suggested that the abundant complete ammonia oxidizer (comammox) elevated in the intermittently aerated environment played a potential role in avoiding N2O generation during wastewater treatment. This work provides an in-depth insight into the utilization of proper management of intermittent aeration to control N2O emission from wastewater treatment plants.


Sign in / Sign up

Export Citation Format

Share Document