Intermittent aeration reducing N2O emissions from bioreactor landfills with gas–water joint regulation

2022 ◽  
Vol 139 ◽  
pp. 309-320
Author(s):  
Yi-Xuan Chu ◽  
Jing Wang ◽  
Lei Jiang ◽  
Guangming Tian ◽  
Ruo He
2018 ◽  
Vol 78 (2) ◽  
pp. 347-357 ◽  
Author(s):  
Fanping Zheng ◽  
Chaoquan Tan ◽  
Wanyuan Hou ◽  
Linli Huang ◽  
Jing Pan ◽  
...  

Abstract Nitrogen removal and N2O emission of a biochar-sludge amended soil wastewater infiltration system (SWIS) with/without intermittent aeration under different influent COD/N ratios was investigated. Nitrogen removal and N2O emission were affected by influent COD/N ratio. Under a COD/N ratio between 1:1 and 15:1, average chemical oxygen demand (COD), NH4+-N and total nitrogen (TN) removal rates decreased with COD/N ratio increase in non-aerated SWISs amended with/without biochar-sludge; an increasing COD/N ratio hardly affected COD and NH4+-N removal in a biochar-sludge amended SWIS with intermittent aeration; the N2O emission rate decreased with COD/N ratio increase in the studied SWISs. The biochar-sludge amended SWIS with intermittent aeration achieved high COD (92.2%), NH4+-N (96.8%), and TN (92.7%) removal rates and a low N2O emission rate (10.6 mg/(m2 d)) under a COD/N ratio of 15:1, which was higher than those in non-aerated SWISs amended with/without biochar-sludge. Combining the biochar-sludge amended SWIS with intermittent aeration enhanced the number of nitrifying bacteria, denitrifying bacteria, nitrate reductase activities, nitrite reductase activities, and improved the abundance of nitrogen removal functional genes under a high influent COD/N ratio. The results suggested that the joint use of intermittent aeration and biochar-sludge in a SWIS could be an effective and appropriate strategy for improving nitrogen removal and reducing N2O emissions in treating high COD/N ratio wastewater.


2014 ◽  
Vol 22 (2) ◽  
pp. 225-233
Author(s):  
Yanchun LI ◽  
Yixiang WANG ◽  
Chengji WANG ◽  
Bailong ZHENG ◽  
Yibin HUANG

2004 ◽  
Vol 39 (3) ◽  
pp. 223-229 ◽  
Author(s):  
Mostafa A. Warith ◽  
Graham J. Takata

Abstract Municipal solid waste (MSW) is slow to stabilize under conventional anaerobic landfill conditions, demanding long-term monitoring and pollution control. Provision of aerobic conditions offers several advantages including accelerated leachate stabilization, increased landfill airspace recovery and a reduction in greenhouse gas emissions. Air injection was applied over 130 days to bench-scale bioreactors containing fresh and aged MSW representative of newly constructed and pre-existing landfill conditions. In the fresh MSW simulation bioreactors, aeration reduced the average time to stabilization of leachate pH by 46 days, TSS by 42 days, TDS by 84 days, BOD5 by 46 days and COD by 32 days. In addition, final leachate concentrations were consistently lower in aerated test cells. There was no indication of a gradual decrease in the concentration of ammonia, and it is likely this high ammonia concentration would continue to be problematic in bioreactor landfill applications. This study focussed only on biodegradability of organics in the solid waste. The concentrations of the nonreactive or conservative substances such as chloride and/or heavy metals remain in the bioreactor landfills due to the continuous recirculation of leachate. The results of this study demonstrate the potential for air injection to accelerate stabilization of municipal solid waste, with greatest influence on fresh waste with a high biodegradable organic fraction.


1996 ◽  
Vol 34 (3-4) ◽  
pp. 413-420
Author(s):  
Y. C. Liao ◽  
D. J. Lee

Transient model of oxygen transfer rate in a sequencing batch reactor is derived and solved numerically. The dissolved oxygen response under several conditions is analyzed. Effects of operational parameters and liquid bath height are studied. When with short, intermittent aeration periods, the transient effects on oxygen transfer rate may be substantial and should be taken into considerations. An example considering bioreaction is also given.


2008 ◽  
Vol 57 (6) ◽  
pp. 963-963
Author(s):  
D. Devaney ◽  
A. R. Godley ◽  
M. E. Hodson ◽  
K. Purdy ◽  
S. Yamulki

Unfortunately an incorrect version of Figure 4 appears on p517 of this paper; the correct version is as printed below. A sentence (“Increased N2O emissions…. Conversely”) should then also be deleted from the corresponding paragraph of the main text as printed on pp516–517; the correct version of this paragraph is also given below. The authors and publisher regret any confusion or inconvenience this may have caused.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Khadim Dawar ◽  
Shah Fahad ◽  
M. M. R. Jahangir ◽  
Iqbal Munir ◽  
Syed Sartaj Alam ◽  
...  

AbstractIn this study, we explored the role of biochar (BC) and/or urease inhibitor (UI) in mitigating ammonia (NH3) and nitrous oxide (N2O) discharge from urea fertilized wheat cultivated fields in Pakistan (34.01°N, 71.71°E). The experiment included five treatments [control, urea (150 kg N ha−1), BC (10 Mg ha−1), urea + BC and urea + BC + UI (1 L ton−1)], which were all repeated four times and were carried out in a randomized complete block design. Urea supplementation along with BC and BC + UI reduced soil NH3 emissions by 27% and 69%, respectively, compared to sole urea application. Nitrous oxide emissions from urea fertilized plots were also reduced by 24% and 53% applying BC and BC + UI, respectively, compared to urea alone. Application of BC with urea improved the grain yield, shoot biomass, and total N uptake of wheat by 13%, 24%, and 12%, respectively, compared to urea alone. Moreover, UI further promoted biomass and grain yield, and N assimilation in wheat by 38%, 22% and 27%, respectively, over sole urea application. In conclusion, application of BC and/or UI can mitigate NH3 and N2O emissions from urea fertilized soil, improve N use efficiency (NUE) and overall crop productivity.


Author(s):  
Kurian Joseph ◽  
S. Esakku ◽  
R. Nagendran
Keyword(s):  

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3961
Author(s):  
Hussein Al-Hazmi ◽  
Xi Lu ◽  
Dominika Grubba ◽  
Joanna Majtacz ◽  
Przemysław Kowal ◽  
...  

The short-term effects of temperature on deammonification sludge were evaluated in a laboratory-scale sequencing batch reactor (SBR). Mathematical modeling was used for further evaluations of different intermittent aeration strategies for achieving high and stable deammonification performance at decreasing temperatures. As for the biomass cultivated at high temperatures (e.g., 30 °C), a higher temperature dependency (the adjusted Arrhenius coefficient θ for 11–17 °C = 1.71 vs. θ for 17–30 °C = 1.12) on the specific anammox growth rates was found at lower temperatures (11–17 °C) in comparison with higher temperatures (17–30 °C). Further evaluations of recovering the nitrogen removal efficiency at decreasing temperatures with the mathematical model by modifying the intermittent aeration strategies (aeration frequency (F) and the ratio (R) between non-aerated (non-aer) phase and aerated (aer) phase durations) indicated that intermittent aeration with a prolonged non-aerated phase (e.g., R ≥ 4 regardless of F value) would help to maintain high and stable deammonification performance (~80%) at decreasing temperatures (14–22 °C). Extending the non-aerated phases (increasing R) and reducing the frequency (F) of off/on phase changes have a positive effect on increasing energy savings, leading to increasing interest in this method.


2021 ◽  
Vol 9 (1) ◽  
pp. 118
Author(s):  
Ziqiang Liu ◽  
Hui Wei ◽  
Jiaen Zhang ◽  
Muhammad Saleem ◽  
Yanan He ◽  
...  

Acid rain (AR), as a global environmental threat, has profoundly adverse effects on natural soil ecosystems. Microorganisms involved in the nitrogen (N) cycle regulate the global N balance and climate stabilization, but little is known whether and how AR influences the structure and complexity of these microbial communities. Herein, we conducted an intact soil core experiment by manipulating the acidity of simulated rain (pH 7.5 (control, CK) vs. pH 4.0 (AR)) in subtropical agricultural soil, to reveal the differences in the structure and complexity of soil nitrifying and denitrifying microbiota using Illumina amplicon sequencing of functional genes (amoA, nirS, and nosZ). Networks of ammonia-oxidizing archaea (AOA) and nirS-carrying denitrifiers in AR treatment were less complex with fewer nodes and lower connectivity, while network of nosZ-carrying denitrifiers in AR treatment had higher complexity and connectivity relative to CK. Supporting this, AR reduced the abundance of keystone taxa in networks of AOA and nirS-carrying denitrifiers, but increased the abundance of keystone taxa in nosZ-carrying denitrifiers network. However, AR did not alter the community structure of AOA, ammonia-oxidizing bacteria (AOB), nirS-, and nosZ-carrying denitrifiers. Moreover, AR did not change soil N2O emissions during the experimental period. AOB community structure significantly correlated with content of soil available phosphorus (P), while the community structures of nirS- and nosZ-carrying denitrifiers both correlated with soil pH and available P content. Soil N2O emission was mainly driven by the nirS-carrying denitrifiers. Our results present new perspective on the impacts of AR on soil N-cycle microbial network complexity and keystone taxa in the context of global changes.


Sign in / Sign up

Export Citation Format

Share Document