Reversing hydrology: Estimation of sub-hourly rainfall time-series from streamflow

2014 ◽  
Vol 60 ◽  
pp. 290-301 ◽  
Author(s):  
Ann Kretzschmar ◽  
Wlodek Tych ◽  
Nick A. Chappell
2021 ◽  
Author(s):  
Arun Ramanathan ◽  
Pierre-Antoine Versini ◽  
Daniel Schertzer ◽  
Ioulia Tchiguirinskaia ◽  
Remi Perrin ◽  
...  

<p><strong>Abstract</strong></p><p>Hydrological applications such as flood design usually deal with and are driven by region-specific reference rainfall regulations, generally expressed as Intensity-Duration-Frequency (IDF) values. The meteorological module of hydro-meteorological models used in such applications should therefore be capable of simulating these reference rainfall scenarios. The multifractal cascade framework, since it incorporates physically realistic properties of rainfall processes such as non-homogeneity (intermittency), scale invariance, and extremal statistics, seems to be an appropriate choice for this purpose. Here we suggest a rather simple discrete-in-scale multifractal cascade based approach. Hourly rainfall time-series datasets (with lengths ranging from around 28 to 35 years) over six cities (Paris, Marseille, Strasbourg, Nantes, Lyon, and Lille) in France that are characterized by different climates and a six-minute rainfall time series dataset (with a length of around 15  years) over Paris were analyzed via spectral analysis and Trace Moment analysis to understand the scaling range over which the universal multifractal theory can be considered valid. Then the Double Trace Moment analysis was performed to estimate the universal multifractal parameters α,C<sub>1</sub> that are required by the multifractal cascade model for simulating rainfall. A renormalization technique that estimates suitable renormalization constants based on the IDF values of reference rainfall is used to simulate the reference rainfall scenarios. Although only purely temporal simulations are considered here, this approach could possibly be generalized to higher spatial dimensions as well.</p><p><strong>Keywords</strong></p><p>Multifractals, Non-linear geophysical systems, Cascade dynamics, Scaling, Hydrology, Stochastic rainfall simulations.</p>


Author(s):  
Amri Muhaimin ◽  
Hendri Prabowo ◽  
Suhartono

The objective of this research is to obtain the best method for forecasting rainfall in the Wonorejo reservoir in Surabaya. Time series and causal approaches using statistical methods and machine learning will be compared to forecast rainfall. Time series regression (TSR), autoregressive integrated moving average (ARIMA), linear regression (LR), and transfer function (TF) are used as a statistical method. Feedforward neural network (FFNN) and deep feed-forward neural network (DFFNN) is used as a machine learning method. Statistical methods are used to capture linear patterns, whereas the machine learning method is used to capture nonlinear patterns. Data about hourly rainfall in the Wonorejo reservoir is used as a case study. The data has a seasonal pattern, i.e. monthly seasonality. Based on the cross-validation and information criteria, the results showed that DFFNN using the time series approach has a more accurate forecast than other methods. In general, machine learning methods have better accuracy than statistical methods. Furthermore, additional information is obtained, through this research the parameter that best to make a neural network model is known. Moreover, these results are also not in line with the results of M3 and M4 competition, i.e. more complex methods do not necessarily produce better forecasts than simpler methods.


2013 ◽  
Vol 17 (7) ◽  
pp. 2487-2500 ◽  
Author(s):  
D. Lisniak ◽  
J. Franke ◽  
C. Bernhofer

Abstract. The use of multiplicative random cascades (MRCs) for temporal rainfall disaggregation has been extensively studied in the past. MRCs are appealing for rainfall disaggregation due to their formal simplicity and the possibility to extract the model parameters directly from observed high resolution rainfall data. These parameters, however, represent the rainfall characteristics of the observation period. Since rainfall characteristics of different time slices are changing due to climate variability, we propose a parameterization approach for MRCs to adjust the parameters according to past (observed) or future (projected) time series. This is done on the basis of circulation patterns (CPs) by extracting a distinct MRC parameterization from high resolution rainfall data, as observed on days governed by each individual CP. The parameterization approach is tested by comparing the statistical properties of disaggregated rainfall time series of two time slices, 1969–1979 and 1989–1999, to the results obtained by two other disaggregation methods (a conceptually similar MRC without CP-based parameterization and a recombination approach) and to the statistical properties of observed hourly rainfall data. In this context, all three approaches use rainfall data of the time slice 1989–1999 for parameterization. We found that the inclusion of CPs into the parameterization of a MRC yields hourly time series that better reproduce the properties of observed rainfall in time slice 1989–1999, as compared to the simple MRC. Despite similar results of both MRCs in the validation period of 1969–1979, we can conclude that the CP-based parameterization approach is applicable for temporal rainfall disaggregation in time slices distinct from the parameterization period. This approach accounts for changes in rainfall characteristics due to changes in the frequency of occurrence of the CPs and allows generating hourly rainfall from daily data, as often provided by a statistical downscaling of global climate change.


2012 ◽  
Vol 9 (9) ◽  
pp. 10115-10149 ◽  
Author(s):  
D. Lisniak ◽  
J. Franke ◽  
C. Bernhofer

Abstract. The use of multiplicative random cascades (MRCs) for temporal rainfall disaggregation has been extensively studied in the past. MRCs are appealing for rainfall disaggregation due to their formal simplicity and the possibility to extract the model parameters directly from observed high resolution rainfall data. These parameters, however, represent the rainfall characteristics of the observation period. Since rainfall characteristics of different time slices are changing due to climate variability, we propose a parameterization approach for MRCs to adjust the parameters according to past (observed) or future (projected) time series. This is done on the basis of circulation patterns (CPs) by extracting a distinct MRC parameterization from high resolution rainfall data, as observed on days governed by each individual CP. The parameterization approach is tested by comparing the statistical properties of disaggregated rainfall time series of two time slices, 1969–1979 and 1989–1999, to the results obtained by two other disaggregation methods (a conceptually similar MRC without CP-based parameterization and a recombination approach) and to the statistical properties of observed hourly rainfall data. In this context, all three approaches use rainfall data of the time slice 1989–1999 for parameterization. We found that the inclusion of CPs into the parameterization of a MRC yields hourly time series that better reproduce the properties of observed rainfall in time slice 1989–1999, as compared to the simple MRC. Despite similar properties of both MRCs for the time slice 1969–1979, we can conclude that the CP-based parameterization approach is applicable for temporal rainfall disaggregation in time slices distinct from the parameterization period. This approach accounts for changes in rainfall characteristics due to changes in the frequency of occurrence of the CPs and allows generating hourly rainfall from daily data, as often provided by a statistical downscaling of global climate change.


2017 ◽  
Vol 7 (4) ◽  
pp. 30 ◽  
Author(s):  
Jurgen D. Garbrecht ◽  
Rabi Gyawali ◽  
Robert W. Malone ◽  
John C. Zhang

Long-term observations of daily rainfall are common and routinely available for a variety of hydrologic applications. In contrast, observations of 10 or more years of continuous hourly rainfall are rare. Yet, sub-daily rainfall data are required in rainfall-runoff models. Rainfall disaggregation can generate sub-daily time-series from available long term daily observations. Herein, the performance of Multiplicative Random Cascade (MRC) model at disaggregating daily-to-hourly rainfall was investigated. The MRC model was parameterized and validated with 15 years of continuous observed daily and hourly rainfall data at three weather stations in Oklahoma. Model performance, or degree to which the disaggregated rainfall time series replicated observations, was assessed using 46 variables of hourly rainfall characteristics, such as longest wet spell duration, average number of rainfall hours per year, and largest hourly rainfall. Findings include: a) average-type hourly rainfall characteristics were better replicated than single value characteristics such as longest, maximum, or peak hourly rainfall; b) the large number of sub-trace hourly rainfall values (<0.254 mm h-1) generated by the MRC model were not supported by observations; c) the random component of the MRC model led to a variation under 15% of the average value for most rainfall characteristics with the exceptions of the “longest wet spell duration” and “maximum hourly rainfall”; and d) the MRC model produced fewer persistent rainfall events compared to those in the observed rainfall record. The large number of generated trace rainfall values and difficulties to replicate reliably extreme rainfall characteristics, reduces the number of potential hydrologic applications that could take advantage of the MRC disaggregated hourly rainfall. Nevertheless, in most cases, the disaggregated rainfall generated by the MRC model replicated observed average-type rainfall characteristics well.


2021 ◽  
Author(s):  
Ashutosh Pati ◽  
Ravindra Kale ◽  
Bhabagrahi Sahoo

&lt;p&gt;Nowadays, most of the urban cities and their surrounding ambiances are facing increasing flooding issues. Many times, the cause of urban flooding is improper drainage under increasing rainfall intensity. To properly monitor and manage the drainage system in urban areas, high-resolution rainfall data is required to model the flooding scenarios a priori. However, the high-resolution rainfall data in urban regions to address the urban flooding issues are rarely available, especially in developing countries. To overcome this problem, many studies suggest the use of hourly scale IMERG-FR (Integrated Multi-satellitE Retrievals for GPM-Final Run) data which exhibits good agreement with the ground-truth rainfall measurements. Therefore, this study attempts to utilize area-averaged IMERG-FR hourly data over Bhubaneswar, a data-scarce urban area of eastern India as a benchmark for assessing the performance of six parametric (Bartlett-Lewis Model, BL) and a nonparametric (Method of Fragments, MOF) approaches disaggregating daily scale IMD (India Meteorological Department) rainfall data into hourly scale data. The performance of the considered approaches is evaluated by disaggregating the monsoon months (June-October) rainfall timeseries data for the period 2001-2015 by adopting performance criteria such as root mean square error (RMSE) and percent bias (PBIAS). The rainfall time series data from 2001-2010 and 2011-2015 were used for calibration and validation of the proposed approaches, respectively.&lt;/p&gt;&lt;p&gt;The obtained RMSE values in the case of the BL approach during calibration and validation period were 2.53 mm and 2.04 mm, respectively. Similarly, RMSE values in the case of the MOF approach during the calibration and validation period were 2.5 mm and 1.87 mm, respectively. This comparison suggests the both of these approaches exhibit nearly the same performance during the calibration period whereas the MOF approach was slightly better than BL during the validation period. The PBIAS estimates for the MOF approach were around -6.6% and 17.3% during the calibration and validation period, respectively, whereas the PBIAS estimates for the BL approach were around 11.25% for calibration and -11.25% for the validation period. From the present evaluation, it could be concluded that though the MOF approach exhibits slightly better performance in terms of RMSE, the BL approach can provide a more balanced performance in terms of PBIAS. As the MOF is a non-parametric approach, it can be applied to a lesser length of daily rainfall time series for disaggregation whereas the BL approach can perform well when its parameters are derived using a good length of rainfall series. Conclusively, this study summarizes the applicability of the BL and MOF approaches for disaggregating course resolution daily scale rainfall to hourly rainfall for the monsoon months in Bhubaneswar using IMERG-FR hourly rainfall data as a benchmark.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Keywords: &lt;/strong&gt;Rainfall; Rainfall disaggregation; Bartlett-Lewis Model (BL); Method of Fragments (MOF); IMERG-FR; IMD.&lt;/p&gt;


Author(s):  
N. Yamoat ◽  
R. Hanchoowong ◽  
S. Sriboonlue ◽  
A. Kangrang

Abstract Due to climate change, many research studies have derived the updated extreme precipitation intensity–duration–frequency relationship (IDF curve) from forecasted sub-hourly rainfall intensity time series, which is one of the most important tools for the planning and designing of hydraulic infrastructures. In this study, the IDF curves (1990–2016) of the six regions and procedures are used in accordance with those of the Royal Irrigation Department (RID)’s study (1950–1988). Each set of IDF relationships consists of 81 intensity values which are the combination of nine durations and nine return periods. The intensity ratios of this study and RID are compared. A greater-than-1 ratio indicates extreme intensity increment from the past to the present. Considering 81 ratios for each region, the number of greater-than-1 ratios for the North, Northeast, Central, East, West, and South regions are 8, 2, 31, 34, 6, and 7, respectively. These ratio numbers are far below 81 which means that the majority of extreme rainfall intensities do not increase from the past to the present. The study found that using accurate historical sub-hourly rainfall time series to create a set of IDF curves would be more reliable than using forecasted rainfall modeling.


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 602
Author(s):  
Luisa Martínez-Acosta ◽  
Juan Pablo Medrano-Barboza ◽  
Álvaro López-Ramos ◽  
John Freddy Remolina López ◽  
Álvaro Alberto López-Lambraño

Seasonal Auto Regressive Integrative Moving Average models (SARIMA) were developed for monthly rainfall time series. Normality of the rainfall time series was achieved by using the Box Cox transformation. The best SARIMA models were selected based on their autocorrelation function (ACF), partial autocorrelation function (PACF), and the minimum values of the Akaike Information Criterion (AIC). The result of the Ljung–Box statistical test shows the randomness and homogeneity of each model residuals. The performance and validation of the SARIMA models were evaluated based on various statistical measures, among these, the Student’s t-test. It is possible to obtain synthetic records that preserve the statistical characteristics of the historical record through the SARIMA models. Finally, the results obtained can be applied to various hydrological and water resources management studies. This will certainly assist policy and decision-makers to establish strategies, priorities, and the proper use of water resources in the Sinú river watershed.


Sign in / Sign up

Export Citation Format

Share Document