Automated data scanning for dense networks of low-cost air quality instruments: Detection and differentiation of instrumental error and local to regional scale environmental abnormalities

2018 ◽  
Vol 101 ◽  
pp. 34-50 ◽  
Author(s):  
Maryam Alavi-Shoshtari ◽  
Jennifer Ann Salmond ◽  
Ciprian Doru Giurcăneanu ◽  
Georgia Miskell ◽  
Lena Weissert ◽  
...  
2019 ◽  
Vol 116 ◽  
pp. 00004
Author(s):  
Marek Badura ◽  
Izabela Sówka ◽  
Piotr Batog ◽  
Piotr Szymański ◽  
Łukasz Dąbrowski

Fine particulate matter (PM2.5) pose a serious threat to health. Therefore it should be monitored to assess its health impacts and to take actions to reduce its pollution. However, the traditional regulatory measuring stations are not able to capture the spatial and temporal variability of PM2.5 concentrations. The opportunity to improve the resolution of PM2.5 data is based on dense networks of miniaturized low-cost sensors. The article presents the sensor network for campus area of Wrocław University of Science and Technology. This system consists of 20 sensor nodes, distributed both on a narrow scale (14 devices on the main campus area) and on a wide scale (devices on campuses in distant parts of the city). Sensor devices have been equipped with optical sensors A003 from Plantower company and with heated inlets. Dedicated website with a map is used to present the up-to-date information about air quality to the public. Messages on air quality are based on air quality index, calculated every 15 minutes. The article demonstrates also few results of preliminary measurements, when episodes of elevated PM2.5 concentrations were observed. Sensor nodes proved to be an useful tool to monitor the changes of air pollution during such events.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 91
Author(s):  
Santiago Lopez-Restrepo ◽  
Andres Yarce ◽  
Nicolás Pinel ◽  
O.L. Quintero ◽  
Arjo Segers ◽  
...  

The use of low air quality networks has been increasing in recent years to study urban pollution dynamics. Here we show the evaluation of the operational Aburrá Valley’s low-cost network against the official monitoring network. The results show that the PM2.5 low-cost measurements are very close to those observed by the official network. Additionally, the low-cost allows a higher spatial representation of the concentrations across the valley. We integrate low-cost observations with the chemical transport model Long Term Ozone Simulation-European Operational Smog (LOTOS-EUROS) using data assimilation. Two different configurations of the low-cost network were assimilated: using the whole low-cost network (255 sensors), and a high-quality selection using just the sensors with a correlation factor greater than 0.8 with respect to the official network (115 sensors). The official stations were also assimilated to compare the more dense low-cost network’s impact on the model performance. Both simulations assimilating the low-cost model outperform the model without assimilation and assimilating the official network. The capability to issue warnings for pollution events is also improved by assimilating the low-cost network with respect to the other simulations. Finally, the simulation using the high-quality configuration has lower error values than using the complete low-cost network, showing that it is essential to consider the quality and location and not just the total number of sensors. Our results suggest that with the current advance in low-cost sensors, it is possible to improve model performance with low-cost network data assimilation.


Author(s):  
A. Hernández-Gordillo ◽  
S. Ruiz-Correa ◽  
V. Robledo-Valero ◽  
C. Hernández-Rosales ◽  
S. Arriaga

Author(s):  
Chekwube A. Okigbo ◽  
Amar Seeam ◽  
Shivanand P. Guness ◽  
Xavier Bellekens ◽  
Girish Bekaroo ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3338
Author(s):  
Ivan Vajs ◽  
Dejan Drajic ◽  
Nenad Gligoric ◽  
Ilija Radovanovic ◽  
Ivan Popovic

Existing government air quality monitoring networks consist of static measurement stations, which are highly reliable and accurately measure a wide range of air pollutants, but they are very large, expensive and require significant amounts of maintenance. As a promising solution, low-cost sensors are being introduced as complementary, air quality monitoring stations. These sensors are, however, not reliable due to the lower accuracy, short life cycle and corresponding calibration issues. Recent studies have shown that low-cost sensors are affected by relative humidity and temperature. In this paper, we explore methods to additionally improve the calibration algorithms with the aim to increase the measurement accuracy considering the impact of temperature and humidity on the readings, by using machine learning. A detailed comparative analysis of linear regression, artificial neural network and random forest algorithms are presented, analyzing their performance on the measurements of CO, NO2 and PM10 particles, with promising results and an achieved R2 of 0.93–0.97, 0.82–0.94 and 0.73–0.89 dependent on the observed period of the year, respectively, for each pollutant. A comprehensive analysis and recommendations on how low-cost sensors could be used as complementary monitoring stations to the reference ones, to increase spatial and temporal measurement resolution, is provided.


Sign in / Sign up

Export Citation Format

Share Document