Visualizing Meyer's loop: A comparison of deterministic and probabilistic tractography

2014 ◽  
Vol 108 (3) ◽  
pp. 481-490 ◽  
Author(s):  
Ylva Lilja ◽  
Maria Ljungberg ◽  
Göran Starck ◽  
Kristina Malmgren ◽  
Bertil Rydenhag ◽  
...  
2014 ◽  
Vol 60 (5) ◽  
pp. 215-222 ◽  
Author(s):  
Cristina Goga ◽  
Zeynep Firat ◽  
Klara Brinzaniuc ◽  
Is Florian

Abstract Objective: The ultimate anatomy of the Meyer’s loop continues to elude us. Diffusion tensor imaging (DTI) and diffusion tensor tractography (DTT) may be able to demonstrate, in vivo, the anatomy of the complex network of white matter fibers surrounding the Meyer’s loop and the optic radiations. This study aims at exploring the anatomy of the Meyer’s loop by using DTI and fiber tractography. Methods: Ten healthy subjects underwent magnetic resonance imaging (MRI) with DTI at 3 T. Using a region-of-interest (ROI) based diffusion tensor imaging and fiber tracking software (Release 2.6, Achieva, Philips), sequential ROI were placed to reconstruct visual fibers and neighboring projection fibers involved in the formation of Meyer’s loop. The 3-dimensional (3D) reconstructed fibers were visualized by superimposition on 3-planar MRI brain images to enhance their precise anatomical localization and relationship with other anatomical structures. Results: Several projection fiber including the optic radiation, occipitopontine/parietopontine fibers and posterior thalamic peduncle participated in the formation of Meyer’s loop. Two patterns of angulation of the Meyer’s loop were found. Conclusions: DTI with DTT provides a complimentary, in vivo, method to study the details of the anatomy of the Meyer’s loop.


NeuroImage ◽  
2012 ◽  
Vol 63 (3) ◽  
pp. 1561-1570 ◽  
Author(s):  
Philip Julian Broser ◽  
Samuel Groeschel ◽  
Till-Karsten Hauser ◽  
Karen Lidzba ◽  
Marko Wilke

NeuroImage ◽  
2009 ◽  
Vol 47 ◽  
pp. S113
Author(s):  
SF Carter ◽  
GJM Parker ◽  
MA Lambon Ralph ◽  
K Herholz

Neurosurgery ◽  
2019 ◽  
Vol 66 (Supplement_1) ◽  
Author(s):  
Evangelia Tsolaki ◽  
Alon Kashanian ◽  
Nader Pouratian

Abstract INTRODUCTION Traditional targeting methods rely on indirect targeting with atlas-defined coordinates that induce interpatient anatomical and functional variability. Precise targeting is crucial for successful surgical intervention associated with improved surgical outcomes. Here, we use clinically weighted probabilistic tractography to investigate the connectivity from volume of tissue activated (VTA) to whole brain in order to evaluate the relationship between structural connectivity and clinical outcome of patients that underwent thalamic deep brain stimulation (DBS). METHODS Magnetic resonance imaging and clinical outcomes from 10 essential tremor (ET) patients who were treated by VIM-DBS at the University of California Los Angeles were evaluated. LeadBDS was used for the VTA calculation and FSL was used to evaluate the whole brain probabilistic tractography of VTA. Tractography maps were binarized and weighted based on the percent of clinical improvement using the Fahn-Tolosa-Martin Tremor Rating Score. The resulting clinically weighted maps were non-linearly fused to MNI space and averaged. These population maps provide a voxel-by-voxel map of the average clinical improvement observed when the VTA demonstrates structural connectivity to the whole brain. RESULTS The VTA connectivity to the whole brain was delineated. Superior clinical improvement was associated with connectivity to voxels connecting the thalamus to the precentral gyrus and to the brainstem/cerebellum. Also, the clinical efficacy map showed that patients with higher clinical improvement (>70%) presented stronger structural connectivity to the precentral gyrus and to the caudal projection to the cerebellum. CONCLUSION Stronger connectivity to the precentral gyrus and to brainstem/cerebellum is associated with superior clinical outcome in thalamic DBS for ET. In the future, rather than focusing on connectivity to predetermined targets, these clinically weighted tractography maps can be used with a reverse algorithm to identify the optimal region of the thalamus to provide clinically superior results.


Sign in / Sign up

Export Citation Format

Share Document