Stochastic assessment of the impact of photovoltaic distributed generation on the power quality indices of distribution networks

2016 ◽  
Vol 135 ◽  
pp. 59-67 ◽  
Author(s):  
Elson N.M. Silva ◽  
Anselmo B. Rodrigues ◽  
Maria da Guia da Silva
Author(s):  
Adel M Sharaf ◽  
Khaled Mohamed Abo-Al-Ez

In a deregulated electric service environment, an effective electric transmission and distribution networks are vital to the competitive environment of reliable electric service. Power quality (PQ) is an item of steadily increasing concern in power transmission and distribution. The traditional approach to overcoming capacity and quality limitations in power transmission and distribution in many cases is the addition of new transmission and/or generating capacity. This, however, may not be practicable or desirable in the real case, for many of reasons. From technical, economical and environmental points of view, there are two important - and most of the time combined - alternatives for building new transmission or distribution networks to enhance the transmission system capacity, and power quality: the Flexible alternating current transmission devices and controllers, and the distributed generation resources near the load centers. The connection of distributed generation to the distribution grid may influence the stability of the power system, i.e. angle, frequency and voltage stability. It might also have an impact on the protection selectivity, and the frequency and voltage control in the system. This paper presents a low cost FACTS based Dynamic Distribution System Compensator (DDSC) scheme for voltage stabilization and power transfer and quality enhancement of the distribution feeders connected to a dispersed wind generator, using MATLAB/ SimPower System simulation tool.


2021 ◽  
Vol 11 (2) ◽  
pp. 774 ◽  
Author(s):  
Ahmed S. Abbas ◽  
Ragab A. El-Sehiemy ◽  
Adel Abou El-Ela ◽  
Eman Salah Ali ◽  
Karar Mahmoud ◽  
...  

In recent years, with the widespread use of non-linear loads power electronic devices associated with the penetration of various renewable energy sources, the distribution system is highly affected by harmonic distortion caused by these sources. Moreover, the inverter-based distributed generation units (DGs) (e.g., photovoltaic (PV) and wind turbine) that are integrated into the distribution systems, are considered as significant harmonic sources of severe harmful effects on the system power quality. To solve these issues, this paper proposes a harmonic mitigation method for improving the power quality problems in distribution systems. Specifically, the proposed optimal planning of the single tuned harmonic filters (STFs) in the presence of inverter-based DGs is developed by the recent Water Cycle Algorithm (WCA). The objectives of this planning problem aim to minimize the total harmonic distortion (THD), power loss, filter investment cost, and improvement of voltage profile considering different constraints to meet the IEEE 519 standard. Further, the impact of the inverter-based DGs on the system harmonics is studied. Two cases are considered to find the effect of the DGs harmonic spectrum on the system distortion and filter planning. The proposed method is tested on the IEEE 69-bus distribution system. The effectiveness of the proposed planning model is demonstrated where significant reductions in the harmonic distortion are accomplished.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6361
Author(s):  
Giovanni Artale ◽  
Giuseppe Caravello ◽  
Antonio Cataliotti ◽  
Valentina Cosentino ◽  
Dario Di Cara ◽  
...  

This paper presents a feasibility study on how to implement power quality (PQ) metrics in a low-cost smart metering platform. The study is aimed at verifying the possibility of implementing PQ monitoring in distribution networks without replacing existing smart metering devices or adding new modules for PQ measurements, thus zeroing the installation costs. To this aim, an electronic board, currently used for remote energy metering, was chosen as a case study, specifically the STCOMET platform. Starting from the specifications of this device, the possibility of implementing power quality metrics is investigated in order to verify if compliance with standard requirements for PQ instruments can be obtained. Issues related to device features constraints are discussed; possible solutions and correction algorithms are presented and experimentally verified for different PQ metrics with a particular focus on harmonic analysis. The feasibility study takes into account both the use of on-board voltage and current transducers for low voltage applications and also the impact of external instrument transformers on measurement results.


2018 ◽  
Vol 58 ◽  
pp. 03016 ◽  
Author(s):  
I.V Naumov ◽  
N.V. Savina ◽  
M.V. Shevchenko

One of the main operation modes that characterizes power quality in distribution networks is asymmetry of three-phase voltage system. Operation of an induction motor (IM) with disturbed voltage symmetry in the supply network can not be considered as a rated one. The system of voltages applied to the stator winding of IM under these conditions contains positive- and negative-sequence components. This worsens the performance characteristics of IM essentially. In order to balance the 0.38 kV network operation and enhance the efficiency of the three-phase electric motor operation it is suggested to use a special balancing unit (BU) that minimizes the negative-sequence components of current and voltage. The operation modes of the obtained system “supply source – induction motor – balancing unit” are simulated within the MATLAB software package of applied programs, which allows one to assess the impact of low quality of power on the operating characteristics of the electric motor and the efficiency of the balancing unit to increase the “durability” of the motor under the asymmetrical power consumption.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2981 ◽  
Author(s):  
Mohammad Seydali Seyf Abad ◽  
Jin Ma ◽  
Ahmad Ahmadyar ◽  
Hesamoddin Marzooghi

Uncertainties associated with the loads and the output power of distributed generations create challenges in quantifying the integration limits of distributed generations in distribution networks, i.e., hosting capacity. To address this, we propose a distributionally robust optimization-based method to determine the hosting capacity considering the voltage rise, thermal capacity of the feeders and short circuit level constraints. In the proposed method, the uncertain variables are modeled as stochastic variables following ambiguous distributions defined based on the historical data. The distributionally robust optimization model guarantees that the probability of the constraint violation does not exceed a given risk level, which can control robustness of the solution. To solve the distributionally robust optimization model of the hosting capacity, we reformulated it as a joint chance constrained problem, which is solved using the sample average approximation technique. To demonstrate the efficacy of the proposed method, a modified IEEE 33-bus distribution system is used as the test-bed. Simulation results demonstrate how the sample size of historical data affects the hosting capacity. Furthermore, using the proposed method, the impact of electric vehicles aggregated demand and charging stations are investigated on the hosting capacity of different distributed generation technologies.


Sign in / Sign up

Export Citation Format

Share Document