Biomechanical models of the hand-arm system to predict the hand gripping forces and transmitted vibration

2022 ◽  
Vol 88 ◽  
pp. 103258
Author(s):  
Zunming Wang ◽  
Yi Qiu ◽  
Xu Zheng ◽  
Zhiyong Hao ◽  
Chi Liu
Keyword(s):  
1998 ◽  
Vol 1 (2) ◽  
pp. 107-121
Author(s):  
Khaled W. Al-Eisawi ◽  
Carter J. Kerk ◽  
Jerome J. Congleton

This study evaluated wrist strength limitations to manual exertion capability in two-dimensional static biomechanical modeling. The researchers hypothesized that wrist strength does not limit manual exertion capability - an assumption commonly made in many strength biomechanical models. An experiment was conducted on 15 right-handed males of college age. Isometric wrist flexion strength was measured at two elbow angles: 90 degree and 135 degree and in two wrist positions: neutral and 45 degree extended. Isometric wrist radial deviation strength was measured at the same two elbow angles and in two wrist positions: neutral and 30 degree ulnarly deviated. Minimum wrist strength limits for which wrist strength does not limit maximal moments about the elbow in manual hand exertions were calculated and compared to their corresponding measured wrist strength moments using paired t-tests. In general, wrist strength was non-limiting. However, wrist flexion strength in the 45 degree extended wrist posture was limiting. Weak-wrist subjects showed more wrist strength limitations than strong-wrist subjects.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3035
Author(s):  
Néstor J. Jarque-Bou ◽  
Joaquín L. Sancho-Bru ◽  
Margarita Vergara

The role of the hand is crucial for the performance of activities of daily living, thereby ensuring a full and autonomous life. Its motion is controlled by a complex musculoskeletal system of approximately 38 muscles. Therefore, measuring and interpreting the muscle activation signals that drive hand motion is of great importance in many scientific domains, such as neuroscience, rehabilitation, physiotherapy, robotics, prosthetics, and biomechanics. Electromyography (EMG) can be used to carry out the neuromuscular characterization, but it is cumbersome because of the complexity of the musculoskeletal system of the forearm and hand. This paper reviews the main studies in which EMG has been applied to characterize the muscle activity of the forearm and hand during activities of daily living, with special attention to muscle synergies, which are thought to be used by the nervous system to simplify the control of the numerous muscles by actuating them in task-relevant subgroups. The state of the art of the current results are presented, which may help to guide and foster progress in many scientific domains. Furthermore, the most important challenges and open issues are identified in order to achieve a better understanding of human hand behavior, improve rehabilitation protocols, more intuitive control of prostheses, and more realistic biomechanical models.


2021 ◽  
Vol 82 (5) ◽  
Author(s):  
Hannah J. Pybus ◽  
Amanda L. Tatler ◽  
Lowell T. Edgar ◽  
Reuben D. O’Dea ◽  
Bindi S. Brook

AbstractPrecision-cut lung-slices (PCLS), in which viable airways embedded within lung parenchyma are stretched or induced to contract, are a widely used ex vivo assay to investigate bronchoconstriction and, more recently, mechanical activation of pro-remodelling cytokines in asthmatic airways. We develop a nonlinear fibre-reinforced biomechanical model accounting for smooth muscle contraction and extracellular matrix strain-stiffening. Through numerical simulation, we describe the stresses and contractile responses of an airway within a PCLS of finite thickness, exposing the importance of smooth muscle contraction on the local stress state within the airway. We then consider two simplifying limits of the model (a membrane representation and an asymptotic reduction in the thin-PCLS-limit), that permit analytical progress. Comparison against numerical solution of the full problem shows that the asymptotic reduction successfully captures the key elements of the full model behaviour. The more tractable reduced model that we develop is suitable to be employed in investigations to elucidate the time-dependent feedback mechanisms linking airway mechanics and cytokine activation in asthma.


2008 ◽  
Author(s):  
Xuemei Feng ◽  
Jingzhou Yang ◽  
Karim Abdel-Malek

2011 ◽  
Vol 40 (4) ◽  
pp. 393-400 ◽  
Author(s):  
R.C.W. Wong ◽  
H. Tideman ◽  
M.A.W. Merkx ◽  
J. Jansen ◽  
S.M. Goh ◽  
...  
Keyword(s):  

Author(s):  
Carlos Calvache ◽  
Leonardo Solaque ◽  
Alexandra Velasco ◽  
Lina Peñuela

Author(s):  
R. Colella ◽  
M.R. Tumolo ◽  
S. Sabina ◽  
C.G. Leo ◽  
P. Mincarone ◽  
...  

2007 ◽  
Vol 98 (4) ◽  
pp. 2439-2455 ◽  
Author(s):  
J. Alexander Birdwell ◽  
Joseph H. Solomon ◽  
Montakan Thajchayapong ◽  
Michael A. Taylor ◽  
Matthew Cheely ◽  
...  

Rats use active, rhythmic movements of their whiskers to acquire tactile information about three-dimensional object features. There are no receptors along the length of the whisker; therefore all tactile information must be mechanically transduced back to receptors at the whisker base. This raises the question: how might the rat determine the radial contact position of an object along the whisker? We developed two complementary biomechanical models that show that the rat could determine radial object distance by monitoring the rate of change of moment (or equivalently, the rate of change of curvature) at the whisker base. The first model is used to explore the effects of taper and inherent whisker curvature on whisker deformation and used to predict the shapes of real rat whiskers during deflections at different radial distances. Predicted shapes closely matched experimental measurements. The second model describes the relationship between radial object distance and the rate of change of moment at the base of a tapered, inherently curved whisker. Together, these models can account for recent recordings showing that some trigeminal ganglion (Vg) neurons encode closer radial distances with increased firing rates. The models also suggest that four and only four physical variables at the whisker base—angular position, angular velocity, moment, and rate of change of moment—are needed to describe the dynamic state of a whisker. We interpret these results in the context of our evolving hypothesis that neural responses in Vg can be represented using a state-encoding scheme that includes combinations of these four variables.


Author(s):  
Zachary Merrill ◽  
April Chambers ◽  
Rakié Cham

Body segment parameters (BSPs) such as segment mass and center of mass are used as inputs in ergonomic design and biomechanical models to predict the risk of musculoskeletal injuries. These models have been shown to be sensitive to the BSP values used as inputs, demonstrating the necessity of using accurate and representative parameters. This study aims to provide accurate BSPs by quantifying the impact of age and body mass index on torso and thigh mass and center of mass in working adults using whole body dual energy x-ray absorptiometry (DXA) scan data. The results showed significant effects of gender, age, and body mass index (BMI) on torso and thigh mass and center of mass, as well as significant effects of age and BMI within genders, indicating that age, gender, and BMI need to be taken into account when predicting BSPs in order to calculate representative ergonomic and biomechanical model outputs.


Sign in / Sign up

Export Citation Format

Share Document