Hierarchical pores from microscale to macroscale boost ultrahigh lithium intercalation pseudocapacitance of biomass carbon

2021 ◽  
Vol 33 ◽  
pp. 102068
Author(s):  
Ting Ma ◽  
Lixia Liao ◽  
Xia Zhang ◽  
Shuaifeng Lou ◽  
Shuai Gao ◽  
...  
2019 ◽  
Author(s):  
Kent Griffith ◽  
Clare Grey

Nb18W8O69 (9Nb2O5×8WO3) is the tungsten-rich end-member of the Wadsley–Roth crystallographic shear (cs) structures within the Nb2O5–WO3 series. It has the largest block size of any known, stable Wadsley–Roth phase, comprising 5 ´ 5 units of corner-shared MO6 octahedra between the shear planes, giving rise to 2 nm ´ 2 nm blocks. Rapid lithium intercalation is observed in this new candidate battery material and 7Li pulsed field gradient nuclear magnetic resonance spectroscopy – measured in a battery electrode for the first time at room temperature – reveals superionic lithium conductivity. In addition to its promising rate capability, Nb18W8O69 adds a piece to the larger picture of our understanding of high-performance Wadsley–Roth complex metal oxides.


Author(s):  
Li Dai ◽  
Yufang Zhang ◽  
Lei Wang ◽  
Shuanli Zheng ◽  
Wenqiang Xu

The natural mountain forests in northwest China are recognized as a substantial carbon pool and play an important role in local fragile ecosystems. This study used inventory data and detailed field measurements covering different forest age groups (young, middle-aged, near-mature, mature, old-growth forest), structure of forest (tree, herb, litter and soil layer) and trees (leaves, branches, trunks and root) to estimate biomass, carbon content ratio, carbon density and carbon storage in Altai forest ecosystems. The results showed that the average biomass of the Altai Mountains forest ecosystems was 126.67 t·hm−2, and the descending order of the value was tree layer (120.84 t·hm−2) > herb layer (4.22 t·hm−2) > litter layer (1.61 t·hm−2). Among the tree parts, trunks, roots, leaves and branches accounted for 50%, 22%, 16% and 12% of the total tree biomass, respectively. The average carbon content ratio was 0.49 (range: 0.41–0.52). The average carbon density of forest ecosystems was 205.72 t·hm−2, and the carbon storage of the forest ecosystems was 131.35 Tg (standard deviation: 31.01) inside study area. Soil had the highest carbon storage (65.98%), followed by tree (32.81%), herb (0.78%) and litter (0.43%) layers. Forest age has significant effect on biomass, carbon content ratio, carbon density and carbon storage. The carbon density of forest ecosystems in study area was spatially distributed higher in the south and lower in north, which is influenced by climate, topography, soil types and dominant tree species.


Nano Select ◽  
2021 ◽  
Author(s):  
Ying Lou ◽  
Xinyu Hao ◽  
Lei Liao ◽  
Kaiyou Zhang ◽  
Shuoping Chen ◽  
...  

Ionics ◽  
2021 ◽  
Vol 27 (3) ◽  
pp. 1025-1039
Author(s):  
Yi Li ◽  
Hechang Shi ◽  
Ce Liang ◽  
Kaifeng Yu

2021 ◽  
Vol 374 ◽  
pp. 137920
Author(s):  
Pengfei Wang ◽  
Zhe Gong ◽  
Ke Ye ◽  
Yinyi Gao ◽  
Kai Zhu ◽  
...  

Author(s):  
Athanase R. Cyamweshi ◽  
Shem Kuyah ◽  
Athanase Mukuralinda ◽  
Catherine W. Muthuri

AbstractAlnus acuminata Kunth. (alnus) is widely used in agroforestry systems across the globe and is believed to provide multiple ecosystem services; however, evidence is lacking in agroforestry literature to support the perceived benefits, particularly in Rwanda. To understand carbon sequestration potential and other benefits of alnus, a household survey, tree inventory and destructive sampling were conducted in north-western Rwanda. Over 75% of the respondents had alnus trees in their farms. The trees provide stakes for climbing beans, firewood and timber. They also improve soil fertility and control soil erosion. Farmers had between 130 and 161 alnus trees per hectare with an average height of 7.7 ± 0.59 m and diameter at breast height of 16.3 ± 1.39 cm. The largest biomass proportion was found in stems (70.5%) while branches and leaves stock about 16.5 and 13% of the total biomass, respectively. At farm level, aboveground biomass of alnus trees was estimated to be 27.2 ± 0.7 Mg ha−1 representing 13.6 Mg of carbon (C) per hectare. Biomass carbon increased with tree size, from 7.1 ± 0.2 Mg C ha−1 in 3 years old trees to 34.4 ± 2.2 Mg C ha−1 in 10 years old trees. The converse was observed with elevation; biomass carbon decreased with increasing elevation from 21.4 ± 1.29 Mg C ha−1 at low (2011–2110 m) to 9.6 ± 0.75 Mg C ha−1 in the high elevation (> 2510 m). In conclusion, alnus agroforestry significantly contributes to carbon sequestration, although the magnitude of these benefits varies with tree age and elevation. Planting alnus trees on farms can meet local needs for stakes for climbing beans, wood and soil fertility improvement, as well as the global need for regulation of climate change.


2021 ◽  
Vol 266 ◽  
pp. 124556
Author(s):  
Ruyi Zou ◽  
Lin Zhu ◽  
Lijun Yan ◽  
Bo Shao ◽  
Hui Cheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document