A new insight into Li-staging, in-situ electrochemical exfoliation, and superior Li storage characteristics of highly crystalline few-layered graphene

2021 ◽  
Vol 41 ◽  
pp. 102908
Author(s):  
Hussen Maseed ◽  
Shaikshavali Petnikota ◽  
Vadali V.S.S. Srikanth ◽  
Naresh Kumar Rotte ◽  
Madhavi Srinivasan ◽  
...  
Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 738
Author(s):  
Nicola Rossi ◽  
Mario Bačić ◽  
Meho Saša Kovačević ◽  
Lovorka Librić

The design code Eurocode 7 relies on semi-probabilistic calculation procedures, through utilization of the soil parameters obtained by in situ and laboratory tests, or by the means of transformation models. To reach a prescribed safety margin, the inherent soil parameter variability is accounted for through the application of partial factors to either soil parameters directly or to the resistance. However, considering several sources of geotechnical uncertainty, including the inherent soil variability, measurement error and transformation uncertainty, full probabilistic analyses should be implemented to directly consider the site-specific variability. This paper presents the procedure of developing fragility curves for levee slope stability and piping as failure mechanisms that lead to larger breaches, where a direct influence of the flood event intensity on the probability of failure is calculated. A range of fragility curve sets is presented, considering the variability of levee material properties and varying durations of the flood event, thus providing crucial insight into the vulnerability of the levee exposed to rising water levels. The procedure is applied to the River Drava levee, a site which has shown a continuous trend of increased water levels in recent years.


2021 ◽  
Vol 9 (1) ◽  
pp. 104889
Author(s):  
Wyllamanney da S. Pereira ◽  
Fabrício B. Destro ◽  
Cipriano B. Gozzo ◽  
Edson R. Leite ◽  
Júlio C. Sczancoski

2021 ◽  
Vol 5 (7) ◽  
pp. 2055-2064
Author(s):  
Saheli Biswas ◽  
Aniruddha P. Kulkarni ◽  
Daniel Fini ◽  
Sarbjit Giddey ◽  
Sankar Bhattacharya

In situ synthesis of methane in a single-temperature zone SOEC in the absence of any methanation catalyst is a completely electrochemical phenomenon governed by the thermodynamic equilibrium of various reactions.


Nanoscale ◽  
2015 ◽  
Vol 7 (40) ◽  
pp. 16952-16959 ◽  
Author(s):  
Kaige Zhang ◽  
Gongke Li ◽  
Yuling Hu

The surface-enhanced Raman spectroscopy (SERS) technique is of great importance for insight into the transient reaction intermediates and mechanistic pathways involved in heterogeneously catalyzed chemical reactions under actual reaction conditions, especially in water.


2017 ◽  
Vol 132 ◽  
pp. 17-21 ◽  
Author(s):  
Tarlan Hajilou ◽  
Yun Deng ◽  
Bjørn Rune Rogne ◽  
Nousha Kheradmand ◽  
Afrooz Barnoush
Keyword(s):  

2010 ◽  
Vol 645-648 ◽  
pp. 271-276 ◽  
Author(s):  
Robert E. Stahlbush ◽  
Rachael L. Myers-Ward ◽  
Brenda L. VanMil ◽  
D. Kurt Gaskill ◽  
Charles R. Eddy

The recently developed technique of UVPL imaging has been used to track the path of basal plane dislocations (BPDs) in SiC epitaxial layers. The glide of BPDs during epitaxial growth has been observed and the role of this glide in forming half-loop arrays has been examined. The ability to track the path of BPDs through the epitaxy has made it possible to develop a BPD reduction process for epitaxy grown on 8° offcut wafers, which uses an in situ growth interrupt and has achieved a BPD reduction of > 98%. The images also provide insight into the strong BPD reduction that typically occurs in epitaxy grown on 4° offcut wafers.


1995 ◽  
Vol 411 ◽  
Author(s):  
S. R. Taylor ◽  
M. W. Wittmann

ABSTRACTCoating failure initiates as a local event at defects which can result from chemical heterogeneities in the resin or physical defects such as bubbles, underfilm deposits, or pinholes. The ability to detect, map the location, as well as make quantitative in-situ measurements of coating heterogeneities will help identify the source of failure (i.e. coating chemistry, method of application, cure schedule, etc.) and provide insight into the mechanisms of coating degradation. This study used a 5 electrode arrangement to perform local electrochemical impedance spectroscopy (LEIS) on coated steel substrates. Using single frequency measurements, LEIS could successfully detect and map both intentional chemical heterogeneities and physical defects such as subsurface bubbles, underfilm deposits, and pinholes. Efforts to optimize probe design and instrumentation are ongoing.


2021 ◽  
Vol 32 (29) ◽  
pp. 295701
Author(s):  
Yalan Huang ◽  
He Zhu ◽  
Hekang Zhu ◽  
Jian Zhang ◽  
Yang Ren ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document