On the micro-scale battery cooling with a sinusoidal hybrid nanofluid flow

2022 ◽  
Vol 46 ◽  
pp. 103819
Author(s):  
Masomeh Ebrahim Qomi ◽  
Ghanbar Ali Sheikhzadeh ◽  
Abolfazl Fattahi
Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 448
Author(s):  
Iskandar Waini ◽  
Anuar Ishak ◽  
Ioan Pop

This study investigates a hybrid nanofluid flow towards a stagnation region of a vertical plate with radiation effects. The hybrid nanofluid consists of copper (Cu) and alumina (Al2O3) nanoparticles which are added into water to form Cu-Al2O3/water nanofluid. The stagnation point flow describes the fluid motion in the stagnation region of a solid surface. In this study, both buoyancy assisting and opposing flows are considered. The similarity equations are obtained using a similarity transformation and numerical results are obtained via the boundary value problem solver (bvp4c) in MATLAB software. Findings discovered that dual solutions exist for both opposing and assisting flows. The heat transfer rate is intensified with the thermal radiation (49.63%) and the hybrid nanoparticles (32.37%).


Author(s):  
Azad Hussain ◽  
Mohammed Hamed Alshbool ◽  
Aishah Abdussattar ◽  
Aysha Rehman ◽  
Hijaz Ahmad ◽  
...  

Heat Transfer ◽  
2021 ◽  
Author(s):  
Anthonysamy John Christopher ◽  
Nanjundan Magesh ◽  
Ramanahalli Jayadevamurthy Punith Gowda ◽  
Rangaswamy Naveen Kumar ◽  
Ravikumar Shashikala Varun Kumar

Sign in / Sign up

Export Citation Format

Share Document