Vortex induced vibrations of a cylinder at low mass ratio

Author(s):  
M. Reyes ◽  
F. Mandujano
Author(s):  
Antonio C. Fernandes ◽  
Fabio M. Coelho ◽  
Ricardo Franciss ◽  
Severino F. S. Neto

This paper aims to discuss the effectiveness of a new passive kind of VIV (Vortex Induced Vibrations) suppression. Moreover, the proposed solutions leads to a significant drag reduction when compared with conventional proposals (strakes for instance). The concept of guided porosity is applied in experimental tests conducted with low mass ratio cylindrical models. The works also shows that the job (VIV control and drag reduction) is achieved without moving parts, in contrast with segmented fairings. It also advances in terms of the omnidirectional solution. Initially, the concept is discussed in terms of the potential theory. Then experimental results are presented in terms of displacements and forces.


Author(s):  
Richard H. J. Willden

The paper presents the results of a numerical investigation of the transverse Vortex-Induced Vibrations of an undamped, low mass ratio elastically supported circular cylinder that was subjected to a uniform flow that resulted in a Reynolds number of 104. The numerical simulations were performed using a two-dimensional Large Eddy Simulation model. The computed cylinder response exhibits three branches; the initial, upper and lower branches. The computed initial and lower branches, which exhibit 2S and 2P modes of shedding respectively, show many similarities to those reported from experiments. However, the computed upper branch, on which a maximum amplitude of response of 0.83D was achieved, shows some dissimilarities to those reported from experiments. The failure to correctly simulate the upper branch response is thought to be due to the high degree of flow three-dimensionality that has been reported to exist on the upper branch.


1992 ◽  
Vol 151 ◽  
pp. 303-306
Author(s):  
M. Taghi Edalati ◽  
Timothy Banks ◽  
Edwin Budding

Wide and narrow Hα lightcurves of R CMa were analysed using Wilson-Devinney (WD) and Information Limit Optimisation Technique (ILOT) approaches. A range of mass ratios, tested by both methods, led to an optimal estimate of around 0.45, at variance with the spectroscopic value. The distortion on the light curve affects the modelling, and so, in a second fitting, this was represented by a ‘hot spot’, associated with mass transfer effects. A semi-detached configuration was then derived. This is supported by the form of the Hα index variation, which has also been modelled. Although thus appearing as a ‘classical Algol’ system, R CMa retains its inherent peculiarity of low mass ratio with low period, which cannot be reconciled with conservative evolution scenarios.


New Astronomy ◽  
2012 ◽  
Vol 17 (1) ◽  
pp. 46-49 ◽  
Author(s):  
B. Ulaş ◽  
B. Kalomeni ◽  
V. Keskin ◽  
O. Köse ◽  
K. Yakut

2021 ◽  
Vol 922 (2) ◽  
pp. 122
Author(s):  
Kai Li ◽  
Qi-Qi Xia ◽  
Chun-Hwey Kim ◽  
Shao-Ming Hu ◽  
Di-Fu Guo ◽  
...  

Abstract The cutoff mass ratio is under debate for contact binaries. In this paper, we present the investigation of two contact binaries with mass ratios close to the low mass ratio limit. It is found that the mass ratios of VSX J082700.8+462850 (hereafter J082700) and 1SWASP J132829.37+555246.1 (hereafter J132829) are both less than 0.1 (q ∼ 0.055 for J082700 and q ∼ 0.089 for J132829). J082700 is a shallow contact binary with a contact degree of ∼19%, and J132829 is a deep contact system with a fill-out factor of ∼70%. The O − C diagram analysis indicated that the two systems manifested long-term period decreases. In addition, J082700 exhibits a cyclic modulation which is more likely resulting from the Applegate mechanism. In order to explore the properties of extremely low mass ratio contact binaries (ELMRCBs), we carried out a statistical analysis on contact binaries with mass ratios of q ≲ 0.1 and discovered that the values of J spin/J orb of three systems are greater than 1/3. Two possible explanations can interpret this phenomenon. One explanation is that some physical processes, unknown to date, are not considered when Hut presented the dynamic stability criterion. The other explanation is that the dimensionless gyration radius (k) should be smaller than the value we used (k 2 = 0.06). We also found that the formation of ELMRCBs possibly has two channels. The study of evolutionary states of ELMRCBs reveals that their evolutionary states are similar with those of normal W UMa contact binaries.


Sign in / Sign up

Export Citation Format

Share Document