The PGC Data Access Portal And Genomic Privacy: Data Sharing Procedures To Satisfy All Communities

2019 ◽  
Vol 29 ◽  
pp. S714
Author(s):  
Lea Davis
2021 ◽  
Author(s):  
Mark Howison ◽  
Mintaka Angell ◽  
Michael Hicklen ◽  
Justine S. Hastings

A Secure Data Enclave is a system that allows data owners to control data access and ensure data security while facilitating approved uses of data by other parties. This model of data use offers additional protections and technical controls for the data owner compared to the more commonly used approach of transferring data from the owner to another party through a data sharing agreement. Under the data use model, the data owner retains full transparency and auditing over the other party’s access, which can be difficult to achieve in practice with even the best legal instrument for data sharing. We describe the key technical requirements for a Secure Data Enclave and provide a reference architecture for its implementation on the Amazon Web Services platform using managed cloud services.


2021 ◽  
Vol 1 ◽  
pp. 80
Author(s):  
Thijs Devriendt ◽  
Clemens Ammann ◽  
Folkert W. Asselbergs ◽  
Alexander Bernier ◽  
Rodrigo Costas ◽  
...  

Various data sharing platforms are being developed to enhance the sharing of cohort data by addressing the fragmented state of data storage and access systems. However, policy challenges in several domains remain unresolved. The euCanSHare workshop was organized to identify and discuss these challenges and to set the future research agenda. Concerns over the multiplicity and long-term sustainability of platforms, lack of resources, access of commercial parties to medical data, credit and recognition mechanisms in academia and the organization of data access committees are outlined. Within these areas, solutions need to be devised to ensure an optimal functioning of platforms.


2019 ◽  
Vol 47 (1) ◽  
pp. 31-40 ◽  
Author(s):  
Angela G. Villanueva ◽  
Robert Cook-Deegan ◽  
Jill O. Robinson ◽  
Amy L. McGuire ◽  
Mary A. Majumder

Making data broadly accessible is essential to creating a medical information commons (MIC). Transparency about data-sharing practices can cultivate trust among prospective and existing MIC participants. We present an analysis of 34 initiatives sharing DNA-derived data based on public information. We describe data-sharing practices captured, including practices related to consent, privacy and security, data access, oversight, and participant engagement. Our results reveal that data-sharing initiatives have some distance to go in achieving transparency.


2018 ◽  
Vol 27 (01) ◽  
pp. 055-059 ◽  
Author(s):  
Bradley Malin ◽  
Kenneth Goodman ◽  

Objective: To summarize notable research contributions published in 2017 on data sharing and privacy issues in medical informatics. Methods: An extensive search of PubMed/Medline, Web of Science, ACM Digital Library, IEEE Xplore, and AAAI Digital Library was conducted to uncover the scientific contributions published in 2017 that addressed issues of biomedical data sharing, with a focus on data access and privacy. The selection process was based on three steps: (i) a selection of candidate best papers, (ii) the review of the candidate best papers by a team of international experts with respect to six predefined criteria, and (iii) the selection of the best papers by the editorial board of the Yearbook. Results: Five best papers were selected. They cover the lifecycle of biomedical data collection, use, and sharing. The papers introduce 1) consenting strategies for emerging environments, 2) software for searching and retrieving datasets in organizationally distributed environments, 3) approaches to measure the privacy risks of sharing new data increasingly utilized in research and the clinical setting (e.g., genomic), 4) new cryptographic techniques for querying clinical data for cohort discovery, and 5) novel game theoretic strategies for publishing summary information about genome-phenome studies that balance the utility of the data with potential privacy risks to the participants of such studies. Conclusion: The papers illustrated that there is no one-size-fitsall solution to privacy while working with biomedical data. At the same time, the papers show that there are opportunities for leveraging newly emerging technologies to enable data use while minimizing privacy risks.


Cryptography ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 7 ◽  
Author(s):  
Karuna Pande Joshi ◽  
Agniva Banerjee

An essential requirement of any information management system is to protect data and resources against breach or improper modifications, while at the same time ensuring data access to legitimate users. Systems handling personal data are mandated to track its flow to comply with data protection regulations. We have built a novel framework that integrates semantically rich data privacy knowledge graph with Hyperledger Fabric blockchain technology, to develop an automated access-control and audit mechanism that enforces users' data privacy policies while sharing their data with third parties. Our blockchain based data-sharing solution addresses two of the most critical challenges: transaction verification and permissioned data obfuscation. Our solution ensures accountability for data sharing in the cloud by incorporating a secure and efficient system for End-to-End provenance. In this paper, we describe this framework along with the comprehensive semantically rich knowledge graph that we have developed to capture rules embedded in data privacy policy documents. Our framework can be used by organizations to automate compliance of their Cloud datasets.


2015 ◽  
Vol 11 (A29A) ◽  
pp. 276-279
Author(s):  
David Spergel ◽  
Robert Williams

From the transit expeditions of 1761 to JWST, ALMA, and the SKA, international projects have played an important role in driving astronomy and heliophysics. Over the past two decades, the increasing complexity and cost of new facilities, the constrained amount of funding available from individual sources, and the rapidly increasing volume of data produced by newer facilities have made international collaboration on large ground- and space-based facilities essential to moving the fields forward. As international cooperation becomes commonplace, data-sharing policies have become ever more important. All IAU members have a stake in the policy decisions made by nations and various scientific consortiums concerning data access and international collaborations. This focus meeting provided a forum to discuss how to improve coordination of global strategic planning in astronomy, astrophysics, and heliophysics in order to maximize the scientific return from research facilities.


2007 ◽  
Vol 16 (5) ◽  
pp. 161-163 ◽  
Author(s):  
Eric Delson ◽  
William E. H. Harcourt-Smith ◽  
Stephen R. Frost ◽  
Christopher A. Norris
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document