Compatibility and phase structure of binary blends of poly(lactic acid) and glycidyl methacrylate grafted poly(ethylene octane)

2009 ◽  
Vol 45 (8) ◽  
pp. 2428-2433 ◽  
Author(s):  
Zhizhong Su ◽  
Qiuying Li ◽  
Yongjun Liu ◽  
Guo-Hua Hu ◽  
Chifei Wu
RSC Advances ◽  
2018 ◽  
Vol 8 (60) ◽  
pp. 34418-34427 ◽  
Author(s):  
Xianzeng Wang ◽  
Jianguo Mi ◽  
Jie Wang ◽  
Hongfu Zhou ◽  
Xiangdong Wang

Poly(ethylene octene) grafted with glycidyl methacrylate (POE-g-GMA) was employed to improve the rheological and thermal properties, toughness, and foaming behaviors of poly(lactic acid) (PLA) through a chain extension effect.


2014 ◽  
Vol 1025-1026 ◽  
pp. 461-465 ◽  
Author(s):  
Sorayut Wongsampanwech ◽  
Pranut Potiyaraj

Poly (lactic acid) or PLA is one of the most promising biodegradable and bio-based materials commercially available for the manufacturing of environmentally friendly plastic products. Although, PLA has high modulus and biodegradable property, its brittleness and low thermal stability are the disadvantages. Several means have been explored so as to overcome this drawback, i.e. copolymerization, addition of some additives as well as blending with other polymers. The polymer blending technique has attracted the most attention because of its simplicity and economical reason. It was reported that the addition of a polyolefin elastomer e.g. poly (ethylene-co-octene) or POE in PLA matrix can effectively improve its brittleness. The aim of this study is thus to investigate the effect of the amount of POE on mechanical properties of the polymer blends. POE was also modified with glycidyl methacrylate in order to improve the compatibility between the two polymers. The results pointed out that the impact strength of PLA markedly increased while tensile and flexural properties of the blends were slightly lower than that of neat PLA. It was also observed that the tensile and flexural properties were slightly higher when the modified POE was used rather than those with unmodified POE which indicated the improved interfacial compatibility between two polymers.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 136
Author(s):  
Edson Antonio dos Santos Filho ◽  
Carlos Bruno Barreto Luna ◽  
Danilo Diniz Siqueira ◽  
Eduardo da Silva Barbosa Ferreira ◽  
Edcleide Maria Araújo

Poly(ethylene-octene) grafted with glycidyl methacrylate (POE-g-GMA) and ethylene elastomeric grafted with glycidyl methacrylate (EE-g-GMA) were used as impact modifiers, aiming for tailoring poly(lactic acid) (PLA) properties. POE-g-GMA and EE-g-GMA was used in a proportion of 5; 7.5 and 10%, considering a good balance of properties for PLA. The PLA/POE-g-GMA and PLA/EE-g-GMA blends were processed in a twin-screw extruder and injection molded. The FTIR spectra indicated interactions between the PLA and the modifiers. The 10% addition of EE-g-GMA and POE-g-GMA promoted significant increases in impact strength, with gains of 108% and 140%, respectively. These acted as heterogeneous nucleating agents in the PLA matrix, generating a higher crystallinity degree for the blends. This impacted to keep the thermal deflection temperature (HDT) and Shore D hardness at the same level as PLA. By thermogravimetry (TG), the blends showed increased thermal stability, suggesting a stabilizing effect of the modifiers POE-g-GMA and EE-g-GMA on the PLA matrix. Scanning electron microscopy (SEM) showed dispersed POE-g-GMA and EE-g-GMA particles, as well as the presence of ligand reinforcing the systems interaction. The PLA properties can be tailored and improved by adding small concentrations of POE-g-GMA and EE-g-GMA. In light of this, new environmentally friendly and semi-biodegradable materials can be manufactured for application in the packaging industry.


Sign in / Sign up

Export Citation Format

Share Document