Toughening of Poly(Lactic Acid) by Blending with Poly(Ethylene-co-Octene)

2014 ◽  
Vol 1025-1026 ◽  
pp. 461-465 ◽  
Author(s):  
Sorayut Wongsampanwech ◽  
Pranut Potiyaraj

Poly (lactic acid) or PLA is one of the most promising biodegradable and bio-based materials commercially available for the manufacturing of environmentally friendly plastic products. Although, PLA has high modulus and biodegradable property, its brittleness and low thermal stability are the disadvantages. Several means have been explored so as to overcome this drawback, i.e. copolymerization, addition of some additives as well as blending with other polymers. The polymer blending technique has attracted the most attention because of its simplicity and economical reason. It was reported that the addition of a polyolefin elastomer e.g. poly (ethylene-co-octene) or POE in PLA matrix can effectively improve its brittleness. The aim of this study is thus to investigate the effect of the amount of POE on mechanical properties of the polymer blends. POE was also modified with glycidyl methacrylate in order to improve the compatibility between the two polymers. The results pointed out that the impact strength of PLA markedly increased while tensile and flexural properties of the blends were slightly lower than that of neat PLA. It was also observed that the tensile and flexural properties were slightly higher when the modified POE was used rather than those with unmodified POE which indicated the improved interfacial compatibility between two polymers.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Wei Kit Chee ◽  
Nor Azowa Ibrahim ◽  
Norhazlin Zainuddin ◽  
Mohd Faizal Abd Rahman ◽  
Buong Woei Chieng

Poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) blends were prepared via melt blending technique. Glycidyl methacrylate (GMA) was added as reactive compatibilizer to improve the interfacial adhesion between immiscible phases of PLA and PCL matrices. Tensile test revealed that optimum in elongation at break of approximately 327% achieved when GMA loading was up to 3wt%. Slight drop in tensile strength and tensile modulus at optimum ratio suggested that the blends were tuned to be deformable. Flexural studies showed slight drop in flexural strength and modulus when GMA wt% increases as a result of improved flexibility by finer dispersion of PCL in PLA matrix. Besides, incorporation of GMA in the blends remarkably improved the impact strength. Highest impact strength was achieved (160% compared to pure PLA/PCL blend) when GMA loading was up to 3 wt%. SEM analysis revealed improved interfacial adhesion between PLA/PCL blends in the presence of GMA. Finer dispersion and smooth surface of the specimens were noted as GMA loading increases, indicating that addition of GMA eventually improved the interfacial compatibility of the nonmiscible blend.


2011 ◽  
Vol 31 (6-7) ◽  
Author(s):  
Fang-Cheng Pai ◽  
Hou-Hsein Chu ◽  
Sun-Mou Lai

Abstract A melt blending process was used to prepare poly(lactic acid) (PLA)/metallocene catalyzed polyethylene octene copolymer (POE) blends in order to toughen PLA. A commercialized ethylene-glycidyl methacrylate copolymer (EGMA) was applied as a compatibilizer to improve the dispersion and interaction of dispersed POE to the PLA matrix. The results showed that chemical interaction seems to be the driving force for reinforcing the compatibility between PLA and POE, and also the dispersion of POE into the PLA matrix domain. With the incorporation of 10 phr EGMA in the blends, POE was well-dispersed at a sub-micrometer scale within the PLA matrix, indicating better interfacial compatibility between PLA and POE. The impact strength test revealed that POE could significantly toughen PLA containing EGMA in the blends, up to no-break level regarding unnotched Izod impact strength at 10 phr EGMA content. With the increase of EGMA content, the blends showed lower tensile strength, but higher elongation at break due to the elastomeric characteristics of EGMA. When 10 phr of the EGMA was incorporated into the blends, its elongation at break reached 54.5%, 10.7 times that of neat PLA at 5.1%. The melt viscosity of compatibilized blends containing 10 phr EGMA increased by more than 50% in comparison with the non-compatibilized blend, which implied a good interfacial interaction between the PLA and POE interface.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 136
Author(s):  
Edson Antonio dos Santos Filho ◽  
Carlos Bruno Barreto Luna ◽  
Danilo Diniz Siqueira ◽  
Eduardo da Silva Barbosa Ferreira ◽  
Edcleide Maria Araújo

Poly(ethylene-octene) grafted with glycidyl methacrylate (POE-g-GMA) and ethylene elastomeric grafted with glycidyl methacrylate (EE-g-GMA) were used as impact modifiers, aiming for tailoring poly(lactic acid) (PLA) properties. POE-g-GMA and EE-g-GMA was used in a proportion of 5; 7.5 and 10%, considering a good balance of properties for PLA. The PLA/POE-g-GMA and PLA/EE-g-GMA blends were processed in a twin-screw extruder and injection molded. The FTIR spectra indicated interactions between the PLA and the modifiers. The 10% addition of EE-g-GMA and POE-g-GMA promoted significant increases in impact strength, with gains of 108% and 140%, respectively. These acted as heterogeneous nucleating agents in the PLA matrix, generating a higher crystallinity degree for the blends. This impacted to keep the thermal deflection temperature (HDT) and Shore D hardness at the same level as PLA. By thermogravimetry (TG), the blends showed increased thermal stability, suggesting a stabilizing effect of the modifiers POE-g-GMA and EE-g-GMA on the PLA matrix. Scanning electron microscopy (SEM) showed dispersed POE-g-GMA and EE-g-GMA particles, as well as the presence of ligand reinforcing the systems interaction. The PLA properties can be tailored and improved by adding small concentrations of POE-g-GMA and EE-g-GMA. In light of this, new environmentally friendly and semi-biodegradable materials can be manufactured for application in the packaging industry.


RSC Advances ◽  
2018 ◽  
Vol 8 (60) ◽  
pp. 34418-34427 ◽  
Author(s):  
Xianzeng Wang ◽  
Jianguo Mi ◽  
Jie Wang ◽  
Hongfu Zhou ◽  
Xiangdong Wang

Poly(ethylene octene) grafted with glycidyl methacrylate (POE-g-GMA) was employed to improve the rheological and thermal properties, toughness, and foaming behaviors of poly(lactic acid) (PLA) through a chain extension effect.


Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1401 ◽  
Author(s):  
Bin Xue ◽  
Hezhi He ◽  
Zhiwen Zhu ◽  
Jiqian Li ◽  
Zhaoxia Huang ◽  
...  

As is an excellent bio-based polymer material, poly(lactic acid) (PLA)’s brittle nature greatly restricts its extensive applications. Herein, poly(butylene succinate) (PBS) was introduced to toughening PLA by melt blending using a self-made triple screw extruder through in situ reactive with ethylene-methyl acrylate-glycidyl methacrylate (EGMA). The effect of EGMA concentrations on the mechanical properties, morphology, interfacial compatibility of PLA/PBS blends were studied. Fourier transform infrared (FT-IR) results demonstrated that the epoxy group of EGMA reacts with the hydroxyl groups of PLA and PBS, which proved the occurrence of interfacial reactions among the tri-component. The significantly improved compatibility between PLA and PBS after EGMA incorporation was made evident by scanning electron microscope (SEM) characterization results. Meanwhile, the contact angle test predicted that the EGMA was selectively localized at the interface between PLA and PBS, and the result was verified by morphological analysis of cryofracture and etched samples. The EGMA improves the compatibility of PLA/PBS blends, and consequently leads to a significantly increased toughness with the elongation at break occurring 83 times more when 10 wt % EGMA was introduced than neat PLA, while impact strength also enhanced by twentyfold. Ultimately, the toughening mechanism of PLA based polymers was established based on the above analysis, exploring a new way for the extensive application for degradable material.


Sign in / Sign up

Export Citation Format

Share Document