scholarly journals Ex vivo electroporation of retinal cells: A novel, high efficiency method for functional studies in primary retinal cultures

2013 ◽  
Vol 109 ◽  
pp. 40-50 ◽  
Author(s):  
M. Natalia Vergara ◽  
Christian Gutierrez ◽  
David R. O'Brien ◽  
M. Valeria Canto-Soler
2018 ◽  
Vol 18 (5) ◽  
pp. 693-701
Author(s):  
Monika Bakonyi ◽  
Szilvia Berko ◽  
Gabor Eros ◽  
Gabor Varju ◽  
Cristina A. Dehelean ◽  
...  

Background: Electrochemotherapy is a novel treatment for cutaneous and subcutaneous tumors utilizing the combination of electroporation and chemotherapeutic agents. Since tumors have an increasing incidence nowadays as a result of environmental and genetic factors, electrochemotherapy could be a promising treatment for cancer patients. Objective: The aim of this article is to summarize the novel knowledge about the use of electroporation for antitumor treatments and to present a new application of electrochemotherapy with a well-known plant derived antitumor drug betulinic acid. For the review we have searched the databases of scientific and medical research to collect the available publications about the use of electrochemotherapy in the treatment of various types of cancer. Method: By the utilization of the available knowledge, we investigated the effect of electroporation on the penetration of a topically applied betulinic acid formulation into the skin by ex vivo Raman spectroscopy on hairless mouse skin. Results: Raman measurements have demonstrated that the penetration depth of betulinic acid can be remarkably ameliorated by the use of electroporation, so this protocol can be a possibility for the treatment of deeper localized cancer nodules. Furthermore, it proved the influence of various treatment times, since they caused different spatial distributions of the drug in the skin. Conclusion: The review demonstrates that electrochemotherapy is a promising tool to treat different kinds of tumors with high efficiency and with only a few moderate adverse effects. Moreover, it presents a non-invasive method to enhance the penetration of antitumor agents, which can offer novel prospects for antitumor therapies.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Hai-Lin Dong ◽  
Jia-Qi Li ◽  
Gong-Lu Liu ◽  
Hao Yu ◽  
Zhi-Ying Wu

AbstractSorbitol dehydrogenase gene (SORD) has been identified as a novel causative gene of recessive forms of hereditary neuropathy, including Charcot–Marie–Tooth disease type 2 and distal hereditary motor neuropathy (dHMN). Our findings reveal two novel variants (c.404 A > G and c.908 + 1 G > C) and one known variant (c.757delG) within SORD in four Chinese dHMN families. Ex vivo cDNA polymerase chain reaction confirmed that c.908 + 1 G > C variant was associated with impaired splicing of the SORD transcript. In vitro cell functional studies showed that c.404 A > G variant resulted in aggregate formation of SORD and low protein solubility, confirming the pathogenicity of SORD variants. We have provided more evidence to establish SORD as a causative gene for dHMN.


2005 ◽  
Vol 85 (5) ◽  
pp. 643-654 ◽  
Author(s):  
Witold W Kilarski ◽  
Natalia Jura ◽  
Pär Gerwins

2011 ◽  
Vol 4 ◽  
pp. JCD.S6444 ◽  
Author(s):  
Jessica F. White ◽  
Andrew S. Cowburn ◽  
Charlotte Summers ◽  
Karen A. Cadwallader ◽  
Iain Mackenzie ◽  
...  

In contrast to radiolabelled erythrocytes and platelets, radiolabelled neutrophils leave the circulating blood in an exponential manner, indicating random rather than age-dependent removal. Neutrophils transit the spleen with a range of residence times that are log normally distributed. We hypothesized that neutrophils are conditioned to undergo apoptosis to an extent that depends on their intrasplenic residence time and that this provides an explanation for the random removal of these cells from blood. Splenic venous and peripheral arterial blood was sampled simultaneously during abdominal surgery in four patients and age-dependent apoptosis assessed in whole blood using annexin V/PI staining. Apoptosis increased after 4 and 20 h ex-vivo incubation and was invariably higher in splenic venous vs arterial neutrophils. Transit through the spleen appears to promote neutrophil apoptosis, with subsequent high efficiency clearance by the liver. This may explain the mechanism underlying the random removal of neutrophils from the blood.


1991 ◽  
Vol 45 (3) ◽  
pp. 268-272 ◽  
Author(s):  
Stephen G. Emerson ◽  
Bernhard O. Palsson ◽  
Michael F. Clarke

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5275-5275
Author(s):  
Ulrich Denz ◽  
Dagmar Wider ◽  
Antonia Mueller ◽  
Monika Engelhardt

Abstract Introduction: Transplantation of functional hematopoietic stem cells (HSC) using peripheral blood (PB), bone marrow (BM) or cord blood (CB) cells is widely used to treat malignant and nonmalignant disorders. Because long-term cryopreservation is performed for PB, BM and CB cells, and these are often used years after cell harvests, the implementation of a quality-assurance is a major requirement to ensure graft safety for clinical use. Methods: We assessed the efficiency of recovery of viable HSC from 37 patients (pts; n=20 NHL, n=6 Hodgkin, n=9 MM, n=2 AML) and 6 allogeneic-donors (AD) with stored PBSC samples. All pts had received an auto-PBSCT between 1992–2004. Stored PBSC samples used in this analysis had been cryopreserved for a median of 5.6 years (y; range: 1.3–12). We determined post-thawing recovery, cell viability, ex vivo expansion potential, CD34+ numbers, CFU growth in methylcellulose culture and LTC-ICs. Viable cells were determined by trypan blue and propidium iodide via FACS analysis, CFUs in 0.9% methylcellulose (supplemented with IMDM, 30% FCS and EPO, IL-3+GM-CSF) and LTC-IC as previously described. Pts and AD were analyzed as a total group and within 3 subgroups of: A) ‘long-term’ cryopreservation: n=21 PBSC harvests had a median cryopreservation of 9.5y (8–12), B) ‘short-term’ cryopreservation: n=16 harvests had a 2.9y (1.3–5.6) cryopreservation period, and C) n=6 pts showing delayed engraftment (EG) or early death after auto-PBSCT: the cryopreservation in these 6 pts was 2.7y (2.2–3.5). Cryopreservation results were correlated with clinical results and EG. Results: Hematopoietic EG in group A and B was prompt with WBC>1000/μl and platelets>20,000/μl on d10–11 post PBSC reinfusion. EG in group C was delayed albeit 4.3x106 CD34+ cells/kg bw (2.1–8.6) had been retransfused (WBC>1000/μl + platelets>20,000/μl: d+13 post PBSC infusion, non-platelet-EG >20,000/μl before death: n=5). Primary cause of death in group C was progressive disease in 3 and serious infections in 5 pts. Group A showed 74.3% viable cells post-thawing in PBSC grafts. Median number of CD34+ cells were 2.9%. Median numbers of CFU-C, BFU-E and GEMM were 36, 60 and 7, respectively. This was comparable with results in group B, showing 70% viable cells post-thawing, CD34+ cells of 4.2% and CFUs of 43, 75 and 6, respectively (p>0.05). Proliferative capacity was intact in both groups after 7 days of suspension culture, generating CFU-C, BFU-E and GEMM of 67, 29 and 1, respectively. In group C, viable cells were present in only 58% and median CFU-C, BFU-E and GEMM were 21, 5 and 0, respectively (p<0.05). After 7 days of suspension culture, total CFUs were 5 (<5% as compared to group A+B). Mean CFU-Cs before and after LTC-IC were 9 and 8 after LTC-IC culture in group C, whereas these were 18 and 16 in group A (p<0.05). Thus, the percentage of viable cells, CFUs and LTC-ICs was preserved after long-term cryopreservation (group A), showed no significant difference between group A+B, but were decreased in group C. Conclusions: We show that human PBSC can be stored for more than a decade without apparent loss of HSC activity and can be efficiently retrieved. These results reinforce that expiration dates cannot be set for safely stored cryopreserved HSC. Assessment of CD34+ cell numbers, clonogenic potential via methylcellulose and LTC-IC assays are clinically relevant, since they may correlate with clinical outcome. Thus, these hematopoietic assays are valuable to assess the quality of cryopreservation and possibly also outcome of PBSCT.


2016 ◽  
Vol 113 (36) ◽  
pp. E5308-E5317 ◽  
Author(s):  
Imad Al Ghouleh ◽  
Daniel N. Meijles ◽  
Stephanie Mutchler ◽  
Qiangmin Zhang ◽  
Sanghamitra Sahoo ◽  
...  

Despite numerous reports implicating NADPH oxidases (Nox) in the pathogenesis of many diseases, precise regulation of this family of professional reactive oxygen species (ROS) producers remains unclear. A unique member of this family, Nox1 oxidase, functions as either a canonical or hybrid system using Nox organizing subunit 1 (NoxO1) or p47phox, respectively, the latter of which is functional in vascular smooth muscle cells (VSMC). In this manuscript, we identify critical requirement of ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50; aka NHERF1) for Nox1 activation and downstream responses. Superoxide (O2•−) production induced by angiotensin II (AngII) was absent in mouse EBP50 KO VSMC vs. WT. Moreover, ex vivo incubation of aortas with AngII showed a significant increase in O2•− in WT but not EBP50 or Nox1 nulls. Similarly, lipopolysaccharide (LPS)-induced oxidative stress was attenuated in femoral arteries from EBP50 KO vs. WT. In silico analyses confirmed by confocal microscopy, immunoprecipitation, proximity ligation assay, FRET, and gain-/loss-of-function mutagenesis revealed binding of EBP50, via its PDZ domains, to a specific motif in p47phox. Functional studies revealed AngII-induced hypertrophy was absent in EBP50 KOs, and in VSMC overexpressing EBP50, Nox1 gene silencing abolished VSMC hypertrophy. Finally, ex vivo measurement of lumen diameter in mouse resistance arteries exhibited attenuated AngII-induced vasoconstriction in EBP50 KO vs. WT. Taken together, our data identify EBP50 as a previously unidentified regulator of Nox1 and support that it promotes Nox1 activity by binding p47phox. This interaction is pivotal for agonist-induced smooth muscle ROS, hypertrophy, and vasoconstriction and has implications for ROS-mediated physiological and pathophysiological processes.


Blood ◽  
2004 ◽  
Vol 103 (3) ◽  
pp. 1158-1165 ◽  
Author(s):  
Wayne R. Godfrey ◽  
Mark R. Krampf ◽  
Patricia A. Taylor ◽  
Bruce R. Blazar

AbstractEliminating alloreactive cells from T-cell populations would enable the transfer of immune function to patients who receive stem cell transplants. However, high-efficiency depletion has proved difficult to achieve. We sought to develop ex vivo approaches for the maximal depletion of alloreactive CD4+ T cells. Using a flow cytometric cell sorting approach after mixed lymphocyte reaction (MLR) culture, we have found that sorted CFSEbright (5-(and-6)-carboxyfluorescein diacetate succinmidyl ester) (nondivided) and activation antigen-negative cells are markedly depleted of alloreactivity. With HLA-mismatched peripheral blood mononuclear cell (PBMC) stimulators we have consistently attained (90%-95%) depletion of alloreactivity. Importantly, when purified matured monocyte-derived dendritic cells (DCs) are used as stimulators, a 100-fold (99%) reduction in alloreactivity was attained, resulting in abrogation of the secondary MLR. Significantly, the CFSEbright CD25- cells recovered from these cultures retained general immunoreactivity, including responses to Candida and cytomegalovirus (CMV) antigens. In addition, a CFSE-based approach was tested and found to be sufficient for graft-versus-host disease (GVHD) prevention in vivo, in a major histocompatibility complex (MHC) class II disparate murine model. This efficient approach to selectively deplete mature alloantigen-specific T cells may permit enhanced immune reconstitution without GVHD. (Blood. 2004;103:1158-1165)


Sign in / Sign up

Export Citation Format

Share Document