scholarly journals PIV and electrodiffusion diagnostics of flow field, wall shear stress and mass transfer beneath three round submerged impinging jets

2016 ◽  
Vol 70 ◽  
pp. 417-436 ◽  
Author(s):  
Kodjovi Sodjavi ◽  
Brice Montagné ◽  
Pierre Bragança ◽  
Amina Meslem ◽  
Paul Byrne ◽  
...  
2017 ◽  
Vol 139 (11) ◽  
Author(s):  
Patrick Fillingham ◽  
Harikrishnan Murali ◽  
Igor V. Novosselov

Wall shear stress is characterized for underexpanded axisymmetric impinging jets for the application of aerodynamic particle resuspension from a surface. Analysis of the flow field resulting from normally impinging axisymmetric jets is conducted using computational fluid dynamics (CFD). A normally impinging jet is modeled with a constant area nozzle while varying the height to diameter ratio (H/D) and the inlet pressures. Schlieren photography is used to visualize the density gradient of the flow field for validation of the CFD. A dimensionless jet parameter (DJP) is developed to describe flow regimes and characterize shear stress. The DJP is defined as being proportional to the jet pressure ratio divided by the H/D ratio squared. Maximum wall shear stress is examined as a function of DJP with three distinct regimes: (i) subsonic impingement (DJP < 1), (ii) transitional (1 < DJP < 2), and (iii) supersonic impingement (DJP > 2). It is observed that wall shear stress is limited to a finite value due to jet energy dissipation in shock structures, which become a dominant dissipation mechanism in the supersonic impingement regime. Additionally, the formation of shock structures in the wall flow was observed for DJP > 2, resulting in difficulties with dimensionless analysis. In subsonic impingement and transitional regimes, equations as a function of the DJP are obtained for the maximum wall shear stress magnitude, maximum shear stress location, and shear stress decay. Using these relationships, wall shear stress can be predicted at all locations along the impingement surface.


2019 ◽  
Vol 85 ◽  
pp. 05004
Author(s):  
Nilesh Dhondoo ◽  
Ştefan-Mugur Simionescu ◽  
Corneliu Bălan

This paper reports on the measurements of wall shear stress and static pressure along a smooth static wall upon which jet impingement occurs. The effect of a single circular jet, respectively an array of jets is studied using a high speed/resolution camera. The areas of interest are the stagnation region and the wall jet region, where the jet is deflected from axial to radial direction. The effect of increasing the distance between the inlets is also investigated. The results are obtained by performing direct flow experimental visualizations and CFD numerical simulations, using the Reynolds averaged Navier-Stokes (RANS) approach with the commercial software ANSYS Fluent. The findings suggest that the smaller the nozzle-to-wall distance is, the higher the pressure peak. The wall shear stress has a bimodal distribution; at stagnation point, the wall shear stress is 0. An increase in the number of inlets produces the effect of a decrease in the stagnation point pressure. The greater the inter-inlet distance is, the greater the stagnation point pressure (there is less inter-jet mixing, less energy is lost in vortices formed between jets).


1989 ◽  
Vol 111 (1) ◽  
pp. 47-54 ◽  
Author(s):  
R. Yamaguchi

The distributions of mass transfer rate and wall shear stress in sinusoidal laminar pulsating flow through a two-dimensional asymmetric stenosed channel have been studied experimentally and numerically. The distributions are measured by the electrochemical method. The measurement is conducted at a Reynolds number of about 150, a Schmidt number of about 1000, a nondimensional pulsating frequency of 3.40, and a nondimensional flow amplitude of 0.3. It is suggested that the deterioration of an arterial wall distal to stenosis may be greatly enhanced by fluid dynamic effects.


Author(s):  
Daniel C. Cole ◽  
Michael L. Jonson ◽  
Kendra V. Sharp

Fluctuating wall shear stress causes vibration and radiated noise from a structure. In the past wall shear stress has been measured indirectly using hot wires and hot films. Recently direct shear sensors have been developed. In this paper a calibration device consisting of a 305 mm × 60 mm × 5 mm channel filled with glycerin is used to calibrate a direct shear stress sensor with amplitudes up to 10 Pa of shear stress over a frequency range from 10 Hz to 1 kHz. The analytically known flow field caused by an oscillating plate 5 mm from the sensor is verified using laser Doppler velocimetry (LDV). The flow field is derived using a frequency-wavenumber approach thereby allowing for a known spatial and temporal field to be generated by specifying a derived plate vibration.


1965 ◽  
Vol 8 (9) ◽  
pp. 1641 ◽  
Author(s):  
Ahmed R. Wazzan ◽  
A. M. O. Smith ◽  
R. C. Lind

Author(s):  
Emna Berrich ◽  
Fethi Aloui ◽  
Jack Legrand

The inverse method, based on a numerical sequential estimation, has been applied for the determination of the wall shear stress of a liquid single phase flow in a sliding rheometer using multi-segment probe. This method requires the inversion of the convection diffusion equation in order to apply it to instantaneous mass transfer measurements. Polarography technique, known as the limiting diffusion current method, has been used. This requires the use of Electro-Diffusion ED probe which allows the determination of the local mass transfer rate for known flow kinematics. In addition, two-segment platinum probe was mounted flush to the inert surface of the upper disk of the sliding rheometer. Hydrodynamic oscillations have been imposed to the torsional flow (type sinusoidal), in order to study the frequency response of the sandwich probe for a fixed polarization voltage. Possible error sources which are likely to affect the interpretation of the results e.g. the directional angle effect, the inertial effect, the diffusion effect and the frequencies of oscillations effect have been studied in order to test the robustness of the inverse method within the presence of such impacts. Furthermore, to demonstrate the possible effect of non-negligible inertia and diffusion, we refer to ED results for both modified Reynolds number defined by [1] and Peclet number ranges as well as for different directional angles. An algorithm has been developed for the numerically filtering of the mass transfer signals, and therefore the wall shear stress signals. It permits to eliminate any possible noise effect due to the imposed vibrations to the torsional flow. The analysis shown that the inverse method is in a good agreement with the ED experimental results for the different cases of study, i.e. for different dimensionless Reynolds numbers, for high and low oscillation frequencies, as well as for different directional angles. The little difference is probably caused by the sensitivity of the double probe to such directional angles or to the neglecting of the insulating gap effect on the inverse method solution as a first step of the study of the inverse method for double probes signals.


2002 ◽  
Vol 124 (2) ◽  
pp. 176-179 ◽  
Author(s):  
Shuichiro Fukushima ◽  
Takaaki Deguchi ◽  
Makoto Kaibara ◽  
Kotaro Oka ◽  
Kazuo Tanishita

A microscopic velocimetry technique for evaluating the flow field over cultured endothelial cells was developed. Flow around a cell model scaled up by a factor of 100 was visualized by using an optical microscope and was quantified by using particle-tracking velocimetry. Wall shear stress on the model surface was determined from a two-dimensional velocity field interpolated from measured velocity vectors. Accuracy of the velocimetry was verified by measuring the flow over a sinusoidal cell model that had a wall shear stress profile analytically determined with linear perturbation theory. Comparison of the experimental results with the analytical solution revealed that the total error of the measured wall shear stress was 6 percent.


Sign in / Sign up

Export Citation Format

Share Document