Comparison of non-covalent binding interactions between three whey proteins and chlorogenic acid: spectroscopic analysis and molecular docking

2021 ◽  
pp. 101035
Author(s):  
Yuanyuan Zhang ◽  
Yingcong Lu ◽  
Yang Yang ◽  
Siyao Li ◽  
Ce Wang ◽  
...  
2017 ◽  
Vol 63 ◽  
pp. 391-403 ◽  
Author(s):  
Junxiang Zhu ◽  
Xiaowen Sun ◽  
Shuhui Wang ◽  
Ying Xu ◽  
Dongfeng Wang

2020 ◽  
Vol 33 (6) ◽  
Author(s):  
Kumkum Sharma ◽  
Priyanka Yadav ◽  
Bhawana Sharma ◽  
Meenakshi Pandey ◽  
Satish K. Awasthi

Author(s):  
Rafat Milad Mohareb ◽  
Noha M. Asaad Bagato ◽  
Ibrahim Taha Radwan

Background: Cancer is a disease illustrated by a shift in the controlled mechanisms that control both cell proliferation and differentiation. It is regarded as a prime health problem worldwide, leading cause of human death-rate exceeded only by cardiovascular diseases. Many reported work was concerned with the discovery of new antitumor compounds this encourage us to synthesis new anticancer agents. Objective: In this work, we are aiming to synthesize target molecules from 1,3-dicarbonyl compounds through many heterocyclization reactions. Method: The reaction of either 4-methylaniline (1a) or 1-naphthylamine (1b) with diethyl malonate (2) gave the anilide derivatives 3a and 3b, respectively. The latter products underwent a series of heterocyclization reactions to give the pyridine, pyran andthiazole derivatives which confirmed with the required spectral data. Results: Thein-vitro antitumor evaluations of the newly synthesized products against four cancer cell lines MCF-7, NCI-H460, SF-268 and WI 38 as normal cell line were screened and the data revealed that compounds 11a, 18b, 18c and 20d showed high antitumor activity and 20dindividualize with potential antitumor activity towards cell lines with lowest cytotoxicity effect. Both EGFR and PIM-1 enzyme inhibition were investigated for the compound 20d and his inhibition effect was promising for each enzyme showing IC50=45.67 ng and 553.3 ng for EGFR and PIM-1, respectively. Conclusion: Molecular docking results of compound 20d showed a strong binding interactions on both enzymes, where, good binding modes obtained on case of EGFR, which closely similar to the binding mode of standard Erlotinib. While, 20d showed complete superimposition binding interactions with VRV-cocrystallized ligand of PIM-1 that may expounds the in-vitro antitumor activity.


2020 ◽  
Vol 179 ◽  
pp. 112994 ◽  
Author(s):  
Pelin Şenel ◽  
Soykan Agar ◽  
V. Oyku Sayin ◽  
Filiz Altay ◽  
Mine Yurtsever ◽  
...  

Foods ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 360 ◽  
Author(s):  
Chun-Min Ma ◽  
Xin-Huai Zhao

The non-covalent interactions between a commercial whey protein isolate (WPI) and two bioactive polyphenols galangin and genistein were studied at pH 6.8 via the multi-spectroscopic assays and molecular docking. When forming these WPI-polyphenol complexes, whey proteins had changed secondary structures while hydrophobic interaction was the major driving force. Detergent sodium dodecyl sulfate destroyed the hydrophobic interaction and thus decreased apparent binding constants of the WPI-polyphenol interactions. Urea led to hydrogen-bonds breakage and protein unfolding, and therefore increased apparent binding constants. Based on the measured apparent thermodynamic parameters like ΔH, ΔS, ΔG, and donor-acceptor distance, galangin with more planar stereochemical structure and random B-ring rotation showed higher affinity for WPI than genistein with location isomerism and twisted stereochemical structure. The molecular docking results disclosed that β-lactoglobulin of higher average hydrophobicity had better affinity for the two polyphenols than α-lactalbumin of lower average hydrophobicity while β-lactoglobulin possessed very similar binding sites to the two polyphenols. It is concluded that polyphenols might have different non-covalent interactions with food proteins, depending on the crucial polyphenol structures and protein hydrophobicity.


Author(s):  
SANGEETA RANI ◽  
KAVITA GAHLOT ◽  
ARVIND KUMAR

Objective: The purpose of this study was to investigate the diabetic effect of phytocompounds isolated from Cressa cretica Linn. using spectroscopic analysis and molecular docking studies. Methods: Coarse powder of the whole plant of C. cretica was extracted with methanol, extracted part was subjected to silica column isolation, and two compounds: 2-Isopropyl-4-(1-methyl-dodeca-2,4-dienyloxy)-benzene-1,3,5-triol (Compound CN-01) and 11-Methyl-dodeca-2,4,6,8,10-pentenoic acid 2,3-dihydroxy-5-methyl-phenyl ester (Compound CN-02) were isolated in pure form. The three-dimensional structure of target protein was downloaded from PDB (www.rcsb.org) Protein Data Bank, Ligand file CN – 01 and CN – 02 were converted to MDL Molfile (V2000) format using ChemSketch 2017.2.1. These files could not be used directly in AutoDock 4.0 tools; thus, they were first converted to PDB files using an open babel tool. Results: Compounds were revealed through spectroscopic analysis and screened using AutoDock 4.0 tools. Docking study recommended that CN – 01 and CN – 02 an existing phytochemical from the plant of C. cretica had the highest fitness docking score and hence could be a potent antidiabetic drug. Conclusion: In this investigation, we docked the receptor (glycogen phosphorylase protein) holds a promising lead target formation against diabetes based on molecular docking analysis (minimum hydrogen bond length and maximum docked score). Thus, these compounds can be effectively used as drugs for treating diabetes which is predicted on the basis of docking scores.


2020 ◽  
Vol 24 ◽  
pp. 100837
Author(s):  
Oghenetega J. Avwioroko ◽  
Temidayo T. Oyetunde ◽  
Francis O. Atanu ◽  
Chiagoziem A. Otuechere ◽  
Akpovwehwee A. Anigboro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document