Solid state fermentation of waste bread pieces by Aspergillus awamori: Analysing the effects of airflow rate on enzyme production in packed bed bioreactors

2015 ◽  
Vol 95 ◽  
pp. 63-75 ◽  
Author(s):  
Mehmet Melikoglu ◽  
Carol Sze Ki Lin ◽  
Colin Webb
2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Hamid Mukhtar ◽  
Ikramul Haq

The present study describes the screening of different agroindustrial byproducts for enhanced production of alkaline protease by a wild and EMS induced mutant strain ofBacillus subtilisIH-72EMS8. During submerged fermentation, different agro-industrial byproducts were tested which include defatted seed meals of rape, guar, sunflower, gluten, cotton, soybean, and gram. In addition to these meals, rice bran, wheat bran, and wheat flour were also evaluated for protease production. Of all the byproducts tested, soybean meal at a concentration of 20 g/L gave maximum production of the enzyme, that is, 5.74  ±  0.26 U/mL from wild and 11.28  ±  0.45 U/mL from mutant strain, during submerged fermentation. Different mesh sizes (coarse, medium, and fine) of the soybean meal were also evaluated, and a finely ground soybean meal (fine mesh) was found to be the best. In addition to the defatted seed meals, their alkali extracts were also tested for the production of alkaline protease byBacillus subtilis, but these were proved nonsignificant for enhanced production of the enzyme. The production of the enzyme was also studied in solid state fermentation, and different agro-industrial byproducts were also evaluated for enzyme production. Wheat bran partially replaced with guar meal was found as the best substrate for maximum enzyme production under solid state fermentation conditions.


2013 ◽  
Vol 4 (3) ◽  
pp. 201-209 ◽  
Author(s):  
José Manuel Salgado ◽  
Luís Abrunhosa ◽  
Armando Venâncio ◽  
José Manuel Domínguez ◽  
Isabel Belo

2020 ◽  
pp. 2097-2116 ◽  
Author(s):  
Priscila Aparecida Casciatori Frassatto ◽  
Fernanda Perpétua Casciatori ◽  
João Cláudio Thoméo ◽  
Eleni Gomes ◽  
Maurício Boscolo ◽  
...  

Cellulases are essential for the hydrolysis of lignocellulosic materials in the production of second generation ethanol. Solid-state cultivation is a process that provides high concentrations of enzymes that can be used in this hydrolysis. The objectives of this work were to produce cellulases by cultivating the fungus Myceliophthora thermophila I-1D3b in a packed bed bioreactor with sugarcane bagasse (SCB) and wheat bran (WB) as substrate and to evaluate the efficiency of the enzymatic extract in the hydrolysis of SCB in natura (BIN) and pretreated with ozone, alkali and ultrasound (BOU). The conditions for enzyme production in the bioreactor were SCB:WB at a ratio of 2.3:1 (w/w), 75 % moisture content; 45 ºC; aeration rate 240 L h-1 and 96 h. The enzyme production was evaluated by endoglucanase, xylanase, filter paper (FPU) and ?-glycosidase activities. For the application of the enzymes, a central composed response surface design with 5 repetitions of the central point was used, taking enzyme volume and hydrolysis time as factors. Such cultivation yielded the following enzymatic activities: 723 U gss-1 of endoglucanases, 2024 U gss-1 of xylanase, 12.6 U gss-1 of FPU and 41 U gss-1 of ?-glucosidase. The results of the application tests indicated the best conditions as 7.0 ml of the enzyme extract (4.2 FPU) and 6 hours for BIN and BOU. The best cellulose-glucose conversions were obtained for BOU, reaching 32.1 % at 65 ºC. In conclusion, the enzyme production in the packed bed bioreactor was efficient and BOU pretreatment improved the hydrolysis of biomass, increasing the efficiency of conversion of cellulose to glucose.


2021 ◽  
Author(s):  
Musaalbakri Abdul Manan ◽  
Colin Webb

Abstract A newly designed, laboratory-scaled and multi-layer squared tray solid state bioreactor (SSB), was developed and successfully operated in solid state fermentation (SSF) conditions. The bioreactor was divided into eight layers of squared perforated trays. Wheat bran was used as a solid substrate for the growth of Aspergillus awamori and Aspergillus oryzae. The SSB was equipped with an oxygen (O2)/carbon dioxide (CO2) gas analyser and a thermocouple. Continuous on-line monitoring of fungal growth could be performed by indirect methods that measure O2 consumed, production of CO2 and metabolic heat. The advantage of using this method is that there are no tedious and time-consuming sampling processes. The evolution of CO2, which represents an accumulation term, was integrated with time and fitted to the Gompertz model in a log-like equation. The Gompertz model generated values that may be used to stimulate and verify the experimental data. Results strongly suggest that the evolved and accumulated CO2, excellently described fungal growth. Simulated results agreed with experimental results. The respiratory quotient (RQ), which is the ratio of CO2 evolution rate (CER) to O2 uptake rate (OUR), was determined by the gas balance method. CER and OUR confirmed that measurements correlated to fungal activity. Each RQ values can explain the differences of each SFF process carried out. Yet, heat evolved by fungal activity also described fungal growth. The current findings is an excellent pre-liminary experimental work, evidencing that multi-layer squared tray SSB with forced moistened aeration present a promising alternative of instrumented bioreactors for SSF processes.


Sign in / Sign up

Export Citation Format

Share Document