Enzyme Production by Solid State Fermentation: General Aspects and an Analysis of the Physicochemical Characteristics of Substrates for Agro-industrial Wastes Valorization

2015 ◽  
Vol 6 (6) ◽  
pp. 1085-1093 ◽  
Author(s):  
Ruann Janser Soares de Castro ◽  
Hélia Harumi Sato
Author(s):  
C. N. Obi ◽  
O. Okezie ◽  
A. N. Ezugwu

This study evaluated amylase production by Bacillus species employing the solid state fermentation (SSF) method using five agro-industrial wastes namely corn cobs, potato peel and maize straw, groundnut husk and corn chaff. Five Bacillus species were tested for amylase production abilities and Bacillus subtilis showed the highest amylase production ability after incubation. Corn chaff gave maximum enzyme production (3.25 U/ml) while the least enzyme was recorded on groundnut husk (2.35 U/ml) at 25. Potato peel had maximum enzyme production by Bacillus subtilis (3.05 U/ml) at pH 7.0 while the least enzyme production was from groundnut husk (2.84 U/ml) at pH 4.0.Thus there was an increase in enzyme production with corresponding increase in substrate concentration. The results obtained in this study support the suitability of using agro-industrial wastes as solid state fermentation substrates for high production of amylase. It’s also a means of solving pollution problems thus making solid state fermentation an attractive method.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Khushal Brijwani ◽  
Praveen V. Vadlani

We investigated the effect of pretreatment on the physicochemical characteristics—crystallinity, bed porosity, and volumetric specific surface of soybean hulls and production of cellulolytic enzymes in solid-state fermentation of Trichoderma reesei and Aspergillus oryzae cultures. Mild acid and alkali and steam pretreatments significantly increased crystallinity and bed porosity without significant change inholocellulosic composition of substrate. Crystalline and porous steam-pretreated soybean hulls inoculated with T. reesei culture had 4 filter paper units (FPU)/g-ds, 0.6 IU/g-ds β-glucosidase, and 45 IU/g-ds endocellulase, whereas untreated hulls had 0.75 FPU/g-ds, 0.06 IU/g-ds β-glucosidase, and 7.29 IU/g-ds endocellulase enzyme activities. In A. oryzae steam-pretreated soybean hulls had 47.10 IU/g-ds endocellulase compared to 30.82 IU/g-ds in untreated soybean hulls. Generalized linear statistical model fitted to enzyme activity data showed that effects of physicochemical characteristics on enzymes production were both culture and enzyme specific. The paper shows a correlation between substrate physicochemical properties and enzyme production.


2019 ◽  
Vol 11 (2) ◽  
pp. 305-310 ◽  
Author(s):  
Ravi Ketipally ◽  
G. Kranthi Kumar ◽  
M. Raghu Ram

The present study was aimed at polygalacturonase production from Aspergillus nomius MR103 under solid state fermentation. A total of 57 fungal strains were obtained from mangrove soils collected from Gilakaladindi and Malakayalanka of Krishna District Andhra Pradesh. For the isolation of fungi these Soil samples were serially diluted and plated on pectin agar media plates.  Among them, the isolate which showed maximum polygalacturonase activity was selected for this study. This strain was identified as A. nomius MR 103 by 18S rRNA sequences analysis. Pectin rich agro-industrial wastes like apple peel, citrus peel, orange peel, wheat bran, rice bran and sugarcane bagasse were used as substrates for polygalacturonase production by A. nomius MR 103. This strain was inoculated into the nutrient broth containing agro industrial wastes under solid state fermentation and amount of Polygalacturonase production was estimated. Maximum enzyme production of 4.83 IU/mg was recorded at pH 7.0 and temperature 35?C after 7 days of incubation, when orange peels were used as substrate.  Addition of carbon and nitrogen sources to orange peel media improved the Polygalcturonase production. Sucrose as carbon and peptone as nitrogen sources were proved  to be the best for  maximum production of Polygalcturonase by A. nomius MR 103 on orange peel substrate. Utilization of agro-industrial by-products provided the establishment of a cost-efficient and sustainable process for enzyme production. 


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Hamid Mukhtar ◽  
Ikramul Haq

The present study describes the screening of different agroindustrial byproducts for enhanced production of alkaline protease by a wild and EMS induced mutant strain ofBacillus subtilisIH-72EMS8. During submerged fermentation, different agro-industrial byproducts were tested which include defatted seed meals of rape, guar, sunflower, gluten, cotton, soybean, and gram. In addition to these meals, rice bran, wheat bran, and wheat flour were also evaluated for protease production. Of all the byproducts tested, soybean meal at a concentration of 20 g/L gave maximum production of the enzyme, that is, 5.74  ±  0.26 U/mL from wild and 11.28  ±  0.45 U/mL from mutant strain, during submerged fermentation. Different mesh sizes (coarse, medium, and fine) of the soybean meal were also evaluated, and a finely ground soybean meal (fine mesh) was found to be the best. In addition to the defatted seed meals, their alkali extracts were also tested for the production of alkaline protease byBacillus subtilis, but these were proved nonsignificant for enhanced production of the enzyme. The production of the enzyme was also studied in solid state fermentation, and different agro-industrial byproducts were also evaluated for enzyme production. Wheat bran partially replaced with guar meal was found as the best substrate for maximum enzyme production under solid state fermentation conditions.


2013 ◽  
Vol 4 (3) ◽  
pp. 201-209 ◽  
Author(s):  
José Manuel Salgado ◽  
Luís Abrunhosa ◽  
Armando Venâncio ◽  
José Manuel Domínguez ◽  
Isabel Belo

Author(s):  
MARIA ALICE ZARUR COELHO ◽  
SELMA GOMES FERREIRA LEITE ◽  
MORSYLEIDE DE FREITAS ROSA ◽  
ANGELA APARECIDA LEMOS FURTADO

Investigou-se o aproveitamento da casca do coco verde, mediante fermentação semisólida, para produção de enzimas. A casca de coco foi previamente desidratada, moída e classificada em três diferentes granulometrias, ou seja, 14, 28 e 32 mesh Tyler. Todas as enzimas obtidas tiveram sua produção máxima na faixa de 24 e 96 horas, o que corresponde ao tempo de produção industrial corrente. Cada granulometria produziu complexos enzimáticos ricos em diferentes atividades. O estudo realizado validou a hipótese do aproveitamento do resíduo da casca do coco verde na produção de enzimas por Aspergillus niger. Abstract The utilization of immature coconut peel as substrate for enzyme production by solid state fermentation was investigated. The coconut peel was previously dehydrated, milled and classified in three distinct granulometries: 14, 28 and 32 mesh Tyler. All the enzymes obtained had its maximum production in 24 to 96 hour interval, which correspond to the current industrial production time. Each granulometry produced rich enzymatic complexes with different activities. This study validates the hypothesis of benefit immature coconut peel as raw material for enzyme production by Aspergillus niger.


2018 ◽  
Vol 37 (2) ◽  
pp. 149-156 ◽  
Author(s):  
C. Marzo ◽  
A.B. Díaz ◽  
I. Caro ◽  
A. Blandino

Nowadays, significant amounts of agro-industrial wastes are discarded by industries; however, they represent interesting raw materials for the production of high-added value products. In this regard, orange peels (ORA) and exhausted sugar beet cossettes (ESBC) have turned out to be promising raw materials for hydrolytic enzymes production by solid state fermentation (SSF) and also a source of sugars which could be fermented to different high-added value products. The maximum activities of xylanase and exo-polygalacturonase (exo-PG) measured in the enzymatic extracts obtained after the SSF of ORA were 31,000 U·kg-1 and 17,600 U·kg-1, respectively; while for ESBC the maximum values reached were 35,000 U·kg-1 and 28,000 U·kg-1, respectively. The enzymatic extracts obtained in the SSF experiments were also employed for the hydrolysis of ORA and ESBC. Furthermore, it was found that extracts obtained from SSF of ORA, supplemented with commercial cellulase, were more efficient for the hydrolysis of ORA and ESBC than a commercial enzyme cocktail typically used for this purpose. In this case, maximum reducing sugars concentrations of 57 and 47 g·L-1 were measured after the enzymatic hydrolysis of ESBC and ORA, respectively.


Sign in / Sign up

Export Citation Format

Share Document