scholarly journals Understanding the fouling mitigation mechanisms of alternating crossflow during cell-protein fractionation by microfiltration

Author(s):  
Maria E. Weinberger ◽  
Ulrich Kulozik
Author(s):  
F. A. Durum ◽  
R. G. Goldman ◽  
T. J. Bolling ◽  
M. F. Miller

CMP-KDO synthetase (CKS) is an enzyme which plays a key role in the synthesis of LPS, an outer membrane component unique to gram negative bacteria. CKS activates KDO to CMP-KDO for incorporation into LPS. The enzyme is normally present in low concentrations (0.02% of total cell protein) which makes it difficult to perform large scale isolation and purification. Recently, the gene for CKS from E. coli was cloned and various recombinant DNA constructs overproducing CKS several thousandfold (unpublished data) were derived. Interestingly, no cytoplasmic inclusions of overproduced CKS were observed by EM (Fig. 1) which is in contrast to other reports of large proteinaceous inclusion bodies in various overproducing recombinant strains. The present immunocytochemical study was undertaken to localize CKS in these cells.Immune labeling conditions were first optimized using a previously described cell-free test system. Briefly, this involves soaking small blocks of polymerized bovine serum albumin in purified CKS antigen and subjecting them to various fixation, embedding and immunochemical conditions.


1978 ◽  
Vol 39 (02) ◽  
pp. 346-359 ◽  
Author(s):  
P D Winocour ◽  
M R Turner ◽  
T G Taylor ◽  
K A Munday

SummaryA major limitation to single-cell protein (SCP) as a human food is its high nucleic acid content, the purine moiety of which is metabolised to uric acid. Rats given a Fusarium mould as a source of SCP in diets containing oxonate, a uricase inhibitor, showed elevated plasma and kidney uric acid concentrations after 21 d, which were related to the level of dietary mould. ADP-induced and thrombin-induced platelet aggregation was greater in the hyperuricaemic rats than in controls and a progressive increase in aggregation with increasing levels of dietary mould was observed. Furthermore a time-lag, exceeding the life-span of rat platelets, was observed between the development of hyperuricaemia and the increase in aggregation. A similar time-lag was observed between the lowering of the hyperuricaemia and the reduction of platelet aggregation when oxonate was removed from the diet.If human platelets react to uric acid in the same manner as rat platelets this might explain the link that has been suggested between hyperuricaemia and ischaemic heart disease. In that event diets high in nucleic acids might be contra-indicated in people at risk from ischaemic heart disease.In rats given a low protein diet (50 g casein/kg) for 21 d ADP-induced and thrombin-induced platelet aggregation and whole blood platelet count were reduced compared with control animals receiving 200 g casein/kg diet but not in rats given 90 or 130 g casein/kg diet. A study of the time course on this effect indicated that the reduction both in aggregation tendency and in whole blood platelet count occurred after 4 d of feeding the low protein diet. These values were further reduced with time.


1995 ◽  
Vol 74 (02) ◽  
pp. 686-692 ◽  
Author(s):  
René W L M Niessen ◽  
Birgit A Pfaffendorf ◽  
Augueste Sturk ◽  
Roy J Lamping ◽  
Marianne C L Schaap ◽  
...  

SummaryAs a basis for regulatory studies on the influence of hormones on (anti)coagulant protein production by hepatocytes, we examined the amounts of the plasma proteins antithrombin III (AT III), protein C, protein S, factor II, factor X, fibrinogen, and prealbumin produced by the hepatoma cell line HepG2, into the culture medium, in the absence and presence of insulin, β-estradiol, dexamethasone and thyroid hormone. Without hormones these cells produced large amounts of fibrinogen (2,452 ± 501 ng/mg cell protein), AT III (447 ± 16 ng/mg cell protein) and factor II (464 ± 31 ng/mg cell protein) and only small amounts of protein C (50 ± 7 ng/mg cell protein) and factor X (55 ± 5 ng/mg cell protein). Thyroid hormone had a slight but significant effect on the enrichment in the culture medium of the anticoagulant protein AT III (1.34-fold) but not on protein C (0.96-fold) and protein S (0.91-fold). This hormone also significantly increased the amounts of the coagulant proteins factor II (1.28-fold), factor X (1.45-fold) and fibrinogen (2.17-fold). Insulin had an overall stimulating effect on the amounts of all the proteins that were investigated. Neither dexamethasone nor ß-estradiol administration did substantially change the amounts of these proteins.We conclude that the HepG2 cell is a useful tool to study the hormonal regulation of the production of (anti)coagulant proteins. We studied the overall process of protein production, i.e., the amounts of proteins produced into the culture medium. Detailed studies have to be performed to establish the specific hormonal effects on the underlying processes, e.g., transcription, translation, cellular processing and transport, and secretion.


1997 ◽  
Vol 77 (05) ◽  
pp. 1014-1019 ◽  
Author(s):  
W Craig Hooper ◽  
Donald J Phillips ◽  
Bruce L Evatt

SummaryWe have recently demonstrated that the proinflammatory cytokine, interleukin-6 (IL-6), could upregulate the production of protein S in the human hepatoma cell line, HepG-2, but not in endothelial cells. In this study, we have demonstrated that the combination of exogenous IL-6 and soluble IL-6 receptor (sIL-6R) could significantly upregulate protein S production in both primary human umbilical vein endothelial cells (HUVEC) and in the immortalized human microvascular endothelial cell line, HMEC-1. The IL-6/sIL-6R complex was also able to rapidly induce tyrosine phosphorylation of the IL-6 transducer, gpl30. Neutralizing antibodies directed against either IL-6 or gpl30 blocked protein S upregulation by the IL-6/sIL-6R complex. It was also observed that exogenous sIL-6R could also upregulate protein S by forming a complex with IL-6 constitutively produced by the endothelial cell. Two other cytokines which also utilize the gpl30 receptor, oncostatin M (OSM) and leukemia inhibitory factor (LIF), were also able to upregulate endothelial cell protein S. This study demonstrates a mechanism that allows endothelial cells to respond to IL-6 and also illustrates the potential importance of circulating soluble receptors in the regulation of the anticoagulation pathway.


Sign in / Sign up

Export Citation Format

Share Document