Effects of rotational tillage practices on soil properties, winter wheat yields and water-use efficiency in semi-arid areas of north-west China

2012 ◽  
Vol 129 ◽  
pp. 7-13 ◽  
Author(s):  
Xianqing Hou ◽  
Rong Li ◽  
Zhikuan Jia ◽  
Qingfang Han ◽  
Wei Wang ◽  
...  
Soil Research ◽  
2011 ◽  
Vol 49 (7) ◽  
pp. 625 ◽  
Author(s):  
Xianqing Hou ◽  
Zhikuan Jia ◽  
Qingfang Han ◽  
Rong Li ◽  
Wei Wang ◽  
...  

Winter wheat (Triticum aestivum L.) is a major crop grown generally in semi-arid areas of north-west China, and water deficiency is the major factor that limits crop yields. Between 2007 and 2010, we conducted a field experiment on winter wheat to investigate the effects of interval with no-tillage and subsoiling (rotational tillage) after crop harvesting on soil water characteristics and crop yields in semi-arid areas of southern Ningxia. Three tillage treatments were tested: no-tillage in year 1, subsoiling in year 2, and no-tillage in year 3 (NT/ST/NT); subsoiling in year 1, no-tillage in year 2, and subsoiling in year 3 (ST/NT/ST); and conventional tillage over years 1–3 (CT). The three-year comparative experiment showed that during the summer fallow, compared with CT, the NT/ST/NT and ST/NT/ST treatments improved mean soil water content at 0–2.0 m depth by 3.9% and 7.8%, respectively, and significantly (P < 0.05) increased mean rainfall storage efficiency by 15.4% and 26.7%. During the wheat growing season, mean soil water content with the NT/ST/NT and ST/NT/ST treatments was significantly higher (P < 0.05) than with the CT treatment (8.0% and 8.6% higher, respectively), and the two rotational tillage treatments significantly (P < 0.05) increased mean rainfall use efficiency compared with CT (by 9.3% and 10.7%, respectively). Yield improvements coupled with greater water-use efficiency occurred with the NT/ST/NT and ST/NT/ST treatments, i.e. mean grain yields were significantly (P < 0.05) increased by 9.6% and 10.7%, respectively, and water-use efficiency was significantly (P < 0.05) improved by 6.7% and 7.8% compared with the CT treatment. The results showed that the interval of no-tillage and subsoiling could improve soil status, and significantly increase crop yields and water-use efficiency. This method could have important applications in the semi-arid areas of north-west China.


2016 ◽  
Vol 178 ◽  
pp. 137-147 ◽  
Author(s):  
Yanhao Lian ◽  
Shahzad Ali ◽  
Xudong Zhang ◽  
Tianlu Wang ◽  
Qi Liu ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3019
Author(s):  
Yuan-Yuan Tang ◽  
Jian-Ping Chen ◽  
Feng Zhang ◽  
Shi-Song Yuan

Water Use Efficiency (WUE) is an important indicator of the carbon cycle in the hydrological and ecological system. It is of great significance to study the response of different hydrological processes to climate and to understand ecosystem carbon sink. However, little is known about the effects and mechanisms of precipitation and temperature on the WUE of different hydrological processes. Thus, three kinds of WUEs (GPP/E (eWUE), GPP/Et (tWUE), and GPP/P (pWUE)) are defined for three different hydrological indicators in semi-arid areas in this study in order to reveal the variation pattern of WUEs based on hydrological indicators and their response to climate. We found that in the past 15 years, the seasonal fluctuation of evapotranspiration in arid areas was large, and the spatial difference of WUE of different hydrological processes was obvious. In semi-arid areas, temperature had a significant effect on WUE (about 68–81%). However, precipitation had a lag effect on WUEs, and the negative impact of precipitation has a great influence (about 84–100%). Secondly, the threshold values of precipitation to WUEs (200 or 300 mm) and temperature to WUEs (2 or 7 °C) are also different from previous studies. This study advances our understanding of the influence of different hydrological processes on ecosystem carbon and climate.


Sign in / Sign up

Export Citation Format

Share Document