Indices of forage nutritional yield and water use efficiency amongst spring-sown annual forage crops in north-west China

2018 ◽  
Vol 93 ◽  
pp. 1-10 ◽  
Author(s):  
Qingping Zhang ◽  
Lindsay W. Bell ◽  
Yuying Shen ◽  
Jeremy P.M. Whish
Soil Research ◽  
2011 ◽  
Vol 49 (7) ◽  
pp. 625 ◽  
Author(s):  
Xianqing Hou ◽  
Zhikuan Jia ◽  
Qingfang Han ◽  
Rong Li ◽  
Wei Wang ◽  
...  

Winter wheat (Triticum aestivum L.) is a major crop grown generally in semi-arid areas of north-west China, and water deficiency is the major factor that limits crop yields. Between 2007 and 2010, we conducted a field experiment on winter wheat to investigate the effects of interval with no-tillage and subsoiling (rotational tillage) after crop harvesting on soil water characteristics and crop yields in semi-arid areas of southern Ningxia. Three tillage treatments were tested: no-tillage in year 1, subsoiling in year 2, and no-tillage in year 3 (NT/ST/NT); subsoiling in year 1, no-tillage in year 2, and subsoiling in year 3 (ST/NT/ST); and conventional tillage over years 1–3 (CT). The three-year comparative experiment showed that during the summer fallow, compared with CT, the NT/ST/NT and ST/NT/ST treatments improved mean soil water content at 0–2.0 m depth by 3.9% and 7.8%, respectively, and significantly (P < 0.05) increased mean rainfall storage efficiency by 15.4% and 26.7%. During the wheat growing season, mean soil water content with the NT/ST/NT and ST/NT/ST treatments was significantly higher (P < 0.05) than with the CT treatment (8.0% and 8.6% higher, respectively), and the two rotational tillage treatments significantly (P < 0.05) increased mean rainfall use efficiency compared with CT (by 9.3% and 10.7%, respectively). Yield improvements coupled with greater water-use efficiency occurred with the NT/ST/NT and ST/NT/ST treatments, i.e. mean grain yields were significantly (P < 0.05) increased by 9.6% and 10.7%, respectively, and water-use efficiency was significantly (P < 0.05) improved by 6.7% and 7.8% compared with the CT treatment. The results showed that the interval of no-tillage and subsoiling could improve soil status, and significantly increase crop yields and water-use efficiency. This method could have important applications in the semi-arid areas of north-west China.


1993 ◽  
Vol 33 (2) ◽  
pp. 245 ◽  
Author(s):  
PG Tow

The persistence and water use efficiency of Digitaria eriantha spp. eriantha and Hunter river lucerne were compared on red solodic soil with a hardsetting surface and poor internal drainage, on the North- West Slopes of New South Wales. After prolonged watering, the profile was wet to a depth of 48 � 1.5 cm, with an available moisture store of 90 mm. Over 3 years, persistence of digitaria was excellent. The population of lucerne was reduced following flooding at summer temperatures, Dry matter production of nitrogen (N) fertilised digitaria per mm warm season rainfall was similar to that of tropical grasses adapted to comparable rainfall environments in subtropical Queensland. Lucerne dry matter per mm rainfall was only about half that of digitaria (3.2 v. 6.3 kg). Lucerne grew well in mixture with digitaria except under prolonged wet soil conditions in summer. Artificial solodic profiles were constructed in the glasshouse to compare digitaria and lucerne in monoculture and mixture under varying temperature, moisture, and N regimes. Lucerne showed sensitivity to both high and low moisture levels at summer temperatures but performed very well at spring temperatures and moderate moisture levels where the mean evapotranspiration ratio was 400 g water per g dry matter. Water use efficiency was higher in digitaria than in lucerne, except at spring temperatures without added N. Water use efficiency of the mixture was always similar to that of the most efficient monoculture of the particular treatment.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1377
Author(s):  
Christine H. Gelley ◽  
Amanda J. Ashworth ◽  
Patrick D. Keyser ◽  
Renata L. G. Nave ◽  
Justin D. Rhinehart

Preparing agricultural producers to cope with volatile weather changes, specifically drought, requires a better understanding of forage water-use efficiency (WUE) potentials. Options to improve farm resiliency to drought may include the use of C4 annual and perennial forages, which have greater production efficiency during drought than commonly used C3 forages. Our objective was to measure WUE through real-time gas exchange measurements of photosynthesis and transpiration in (1) a greenhouse study and (2) under field-grazing conditions. Growth parameters, instantaneous water use efficiency (iWUE), and mass-based WUE (mWUE) data were collected under greenhouse conditions in Study 1 for the following species: crabgrass (Digitaria sanguinalis cv. ‘Red River’), switchgrass (Panicum virgatum cv. ‘Alamo’), big bluestem (Andropogon gerardii cv. ‘OZ-70’), indiangrass (Sorghastum nutans cv. ‘Rumsey’), eastern gamagrass (Tripsacum dactyloides cv. ‘Pete’), bermudagrass (Cynodon dactylon cv. ‘Vaughn’s #1’), sorghum-sudangrass (Sorghum bicolor (L.) × Sorghum sudanese (P.) cv. ‘Greengrazer’), and tall fescue (Schedonorus arundinaceus (Schreb.) Dumort). Study 2 occurred from 2014 to 2016, and evaluated iWUE of crabgrass, switchgrass, bermudagrass, eastern gamagrass, and a big bluestem/indiangrass mix under field conditions. Overall, in situ iWUE of crabgrass, switchgrass, eastern gamagrass, and bermudagrass did not differ, while iWUE of the big bluestem/indiangrass was less than switchgrass and crabgrass, an advantage for these species if the standardized precipitation index drops below zero. Bermudagrass, switchgrass, sorghum-sudangrass, pearl millet, and indiangrass had comparable mWUE values under greenhouse-simulated drought. These results will aid in the development of forage species recommendations for mitigating drought and improving resiliency.


Soil Research ◽  
2008 ◽  
Vol 46 (8) ◽  
pp. 659 ◽  
Author(s):  
Jin He ◽  
Hongwen Li ◽  
A. D. McHugh ◽  
Zhongmin Ma ◽  
Xinhui Cao ◽  
...  

Permanent raised beds have been proposed as a more productive and water-efficient alternative to the conventional system of flat, flood-irrigated bays for planting narrow-spaced crops in arid north-west China. Data from a field experiment (2005–2007) conducted in the Hexi Corridor at Zhangye, Gansu Province, China, were used to compared the effects of traditional tillage (TT), zero tillage (ZT), and permanent raised beds (PRB) on crop growth, yield, and water use in a spring wheat monoculture. The results show that PRB significantly (P < 0.05) increased soil water content to 0.30 m depth by 7.2–10.7% and soil temperature to 0.05 m depth by 0.2–0.9°C during the wheat-growing period relative to TT and ZT treatments. Bulk density in 0–0.10 m soil layer under PRB was also 5.8% less than for flat planting treatments. Mean wheat yields over 3 years on PRB plots were slightly greater and furrow irrigation in permanent beds was particularly effective in increasing irrigation water use efficiency (~18%), compared with TT and ZT treatments. This increase in water use efficiency is of considerable importance for these arid areas where irrigation water resources are scarce.


2005 ◽  
Vol 85 (4) ◽  
pp. 877-888 ◽  
Author(s):  
Paul G. Jefferson ◽  
Herb W. Cutforth

Crested wheatgrass (Agropyron cristatum L. Gaertn.) and alfalfa (Medicago sativa L.) are introduced forage species used for hay and grazing by cattle across western Canada. These species are well adapted to the semiarid region but their long-term responses to water stress have not been previously compared. Two alfalfa cultivars with contrasting root morphology (tap-rooted vs. creeping-rooted) and two crested wheatgrass (CWG) cultivars with different ploidy level (diploid vs. tetraploid) were compared with continuously cropped spring wheat (Triticum aestivum L.) for 6 yr at a semiarid location in western Canada. Soil water depletion, forage yield, water use efficiency, leaf water potential, osmotic potential and turgor were compared. There were no consistent differences between cultivars within alfalfa or CWG for variables measured. However, these two species exhibit different water stress response strategies. Leaf water potential of CWG was lower during midday stress period than that of alfalfa or wheat. Alfalfa apparently had greater capacity to osmotically adjust to avoid midday water stress and maintain higher turgor. Soil water use patterns changed as the stands aged. In the initial years of the trial, forage crops used soil water from upper layers of the profile. In later years, soil water was depleted down to 3 m by alfalfa and to 2 m by crested wheatgrass. Alfalfa was able to deplete soil water to lower concentrations than crested wheatgrass or wheat. Soil water depletion by wheat during the non-active growth season (after harvest to fall freeze-up) was much less than for CWG or alfalfa as expected for annual vs. perennial crops. As a result, more soil water was available to wheat during its active growth period. In the last 3 yr, the three species depleted all available soil water. Forage yield responses also changed over time. In the initial 3 yr, crested wheatgrass yielded as much as or more than alfalfa. For the last 3 yr of the experiment, alfalfa yielded more forage than crested wheatgrass. Forage crops deplete much more soil water during periods of aboveground growth dormancy than wheat. Water use efficiency of crested wheatgrass declined with stand age compared with fertilized continuous spring wheat. Alfalfa exhibited deep soil water extraction and apparent osmotic adjustment in response to water stress while CWG exhibited tolerance of low water potential during stress. Key words: forage yield, soil water, water potential, water use, water use efficiency, drought


Author(s):  
Himangshu Das ◽  
Champak Kumar Kundu ◽  
Asis Mukherjee ◽  
Ratneswar Poddar ◽  
Pintoo Bandopadhyay

2019 ◽  
Vol 46 (10) ◽  
pp. 907 ◽  
Author(s):  
Pei-Li Fu ◽  
Shi-Dan Zhu ◽  
Jiao-Lin Zhang ◽  
Patrick M. Finnegan ◽  
Yan-Juan Jiang ◽  
...  

Karst and non-karst forests occur in the same region in south-west China, but the soil water and mineral nutrients availability are different between the forests. Our hypothesis was that the leaves of karst trees would be better adapted to dry, nutrient-poor conditions than those of trees in a nearby non-karst forest. We compared the gas exchange, anatomical characteristics and mineral nutrient concentrations in leaves from 21 tree species in a tropical karst forest and 19 species in a nearby non-karst forest in south-west China. We found that the leaves of karst trees had higher P concentrations, photosynthetic capacity and water use efficiency, and greater adaxial and abaxial epidermis thickness than leaves of non-karst forest trees. Evergreen and deciduous trees differed more significantly in leaf functional traits in the karst forest than in the non-karst forest. The leaf palisade:spongy mesophyll thickness ratio was positively correlated with stomatal conductance and negatively correlated with photosynthetic water use efficiency in the karst forest but not in the non-karst forest. Our findings indicate that karst forest trees are more conservative in water use, whereas soil P deficiency could be a major limiting factor for the growth of non-karst forest trees.


2016 ◽  
Vol 67 (8) ◽  
pp. 864 ◽  
Author(s):  
B. A. Rowe ◽  
J. E. Neilsen

Irrigation was applied at different rates and frequencies during five consecutive periods of vegetative growth of the forage turnip Brassica rapa var. rapa cv. Barkant, grown in the field in north-west Tasmania, Australia, during the spring and summer of 1999–2000 (Season 1) and 2000–01 (Season 2). Irrigation applied before root expansion did not increase the dry matter (DM) of turnips (leaf plus root) in either season. At the following four harvests in each season, DM increased linearly in proportion to the cumulative amount of irrigation applied before the harvests. Irrigation water use efficiency, as measured by the slopes of the linear regressions, ranged from 5.7 to 17.2 kg DM ha–1 mm–1 in Season 1 and from 19.2 to 26.0 kg DM ha–1 mm–1 in Season 2. The effective use of water (EUW; yield increase/evapotranspiration within a period) was calculated for each of the five periods in Season 2 to identify the vegetative growth periods when the response ( kg DM ha–1 mm–1) was greatest and limited irrigation water could be applied most effectively. EUW of irrigated turnip increased from 16.8 kg DM ha–1 mm–1 at the onset of root expansion to 53.5 kg DM ha–1 mm–1 when root growth rate was a maximum, but declined thereafter. Scarce irrigation should be applied between the onset of root expansion and approximately 8 weeks later, when the response to irrigation ( kg DM ha–1 mm–1) was greatest.


Sign in / Sign up

Export Citation Format

Share Document