Heat stress in temperate and tropical maize hybrids: Differences in crop growth, biomass partitioning and reserves use

2012 ◽  
Vol 130 ◽  
pp. 87-98 ◽  
Author(s):  
Juan I. Rattalino Edreira ◽  
María E. Otegui
2011 ◽  
Vol 123 (2) ◽  
pp. 62-73 ◽  
Author(s):  
J.I. Rattalino Edreira ◽  
E. Budakli Carpici ◽  
D. Sammarro ◽  
M.E. Otegui

2021 ◽  
Vol 19 (1) ◽  
pp. 27-43
Author(s):  
KB Koirala ◽  
MP Tripathi ◽  
K Seetharam ◽  
MT Vinayan ◽  
PH Zaidi

In recent years, National Maize Research Program (NMRP) aimed a paradigm shift from open-pollinated varieties (OPVs) towards hybrid maize to achieve self-sufficiency in maize for food, feed, and hybrid seed within the country. In this mission, it is necessary to identify and deploy high-yielding stress-resilient maize hybrids that can cope with climate change effects, including heat stress. Under the project “Heat Tolerant Maize for Asia (HTMA)”, NMRP introduced the hybrids that performed better in previous years in different environments from International Maize and Wheat Improvement Center (CIMMYT) Hyderabad for multilocation on-farm testing. Fifteen genotypes were evaluated at two locations, two sites in Madi, Chitwan, and one in Ghorahi, Dang, along with Rampur Hybrid-8 as a heat-tolerant check, and RML-86/RML-96 and RML-95/RML-96 as normal checks. Randomized complete block design (RCBD) was used with three replicates during the spring of 2016/17. Likewise, another 20 and 18 promising hybrids were demonstrated during the winter of 2016/17 and 2017/18, respectively, in different hybrid growing pockets considering a site – a replication. Grain yield and yield attributing traits at all locations were recorded. From the across-site data analysis, selected heat-tolerant hybrids from the experiment were CAH1432, ZH15405, ZH141592, and CAH1715 which were statistically at par with promising normal hybrid RML-86/RML-96 and superior to already released heat-tolerant Rampur Hybrid-8. In 2016/17, ZH138098, ZH1620, and VH121062 were farmers’ preferred heat-tolerant hybrids. In 2017/18, Rampur Hybrid-10, ZH141592, CAH1715, and ZH15440 were preferred by farmers. The selected bestbet are taken forward for official release/registration followed by commercialization through a public-private partnership with Nepali seed companies/cooperatives. SAARC J. Agric., 19(1): 27-43 (2021)


2020 ◽  
Vol 25 (4) ◽  
pp. 627-644 ◽  
Author(s):  
Shulbhi Verma ◽  
Narendra Kumar ◽  
Amit Verma ◽  
Hukum Singh ◽  
Kadambot H. M. Siddique ◽  
...  

2019 ◽  
Vol 13 ((04) 2019) ◽  
pp. 536-545 ◽  
Author(s):  
Jewel Jameeta Noor ◽  
M.T. Vinayan ◽  
Shahid Umar ◽  
Pooja Devi ◽  
Muhammad Iqbal ◽  
...  

Heat stress resilience has emerged as an important trait in maize hybrids targeted for post–monsoon spring cultivation in large parts of South Asia and many other parts of the tropics. Selection based on grain yield alone under heat stress is often misleading, and therefore an approach involving stress-adaptive secondary traits along with grain yield could help in the development of improved, stable heat stress tolerant cultivars. We attempted to identify reliable and effective secondary traits associated with heat stress tolerance in tropical maize and sources of heat stress tolerant germplasm. A panel of 99 elite maize inbred lines representing the wider genetic diversity of tropical maize and a set of 58 elite hybrids were phenotyped under natural heat stress and optimal temperature for grain yield and 15 secondary traits including 10 morpho-physiological traits and 5 yield attributes. Evaluation under natural heat stress was done during the spring season by adjusting the planting date so that the complete reproductive stage (from tassel emergence to late grain filling) was exposed to heat stress. The optimal temperature trial was planted during the monsoon season with no exposure to heat stress at any crop stage. Heat stress significantly affected most of the observed traits. Among the traits studied two yield attributing traits, i.e.- ears per plant (EPP) and kernel per row (KPR), and three morpho-physiological traits, i.e.- chlorophyll content (CC), leaf firing (LF) and tassel blast (TB) were found to be the key secondary traits associated with grain yield under heat stress. In addition, low anthesis-silking internal (ASI) is an important trait that needs to be added in the index selection for heat stress tolerance. The study identified nine promising heat stress tolerant maize inbred lines with desirable secondary traits and grain yield under severe heat stress, which could be used as source germplasm in heat stress tolerance maize breeding program.


2013 ◽  
Vol 150 ◽  
pp. 63-73 ◽  
Author(s):  
V.O. Sadras ◽  
L. Lake ◽  
A. Leonforte ◽  
L.S. McMurray ◽  
J.G. Paull

Crop Science ◽  
2020 ◽  
Vol 60 (6) ◽  
pp. 3049-3065
Author(s):  
Matheus Dalsente Krause ◽  
Kaio Olímpio das Graças Dias ◽  
Jhonathan Pedroso Rigal dos Santos ◽  
Amanda Avelar Oliveira ◽  
Lauro José Moreira Guimarães ◽  
...  

1982 ◽  
Vol 62 (4) ◽  
pp. 855-860 ◽  
Author(s):  
M. TOLLENAAR ◽  
T. B. DAYNARD

The effect of source-sink ratio (i.e., the ability of the leaves to produce photosynthate versus the capacity of the grain to accommodate the assimilates) on dry matter accumulation and leaf senescence during the grain filling period of two short-season maize (Zea mays L.) hybrids was investigated in 1979 and 1980. Source-sink ratio of the maize hybrids was altered by ear removal at midsilking and at 3 wk after midsilking; by partial fertilization of the topmost ear so that treatment ears contained approximately 50% of kernel number of the control; and by removal of all leaf blades but that of the ear leaf at 2 wk after midsilking. Crop growth rate during the period from 3–5 wk after midsilking was reduced by 30% for the partly fertilized treatment and by 60% for both ear removal treatments. During the period from 5 to 7 wk after midsilking, the treatment-by-hybrid interaction for crop growth rate reflected different patterns of leaf senescence. In one hybrid, treatments which caused reductions in sink size delayed leaf senescence and increased the crop growth during the 5 to 7-wk postsilking interval, relative to the control. The reverse was evident for the other hybrid. Partial defoliation tended to cause the remaining ear leaf to senescence slightly earlier than in the control. Apparently two types of leaf senescence occurred: senescence due to assimilate starvation, and senescence due to excessive assimilate accumulation. The former caused by excessively low source-sink ratio and the latter caused by excessively high source-sink ratio. These results indicate that a delicate balance exists between sink and source during the grain-filling period of maize, and that disturbance of this balance can cause substantial yield reductions, plus an acceleration of leaf senescence and maturation processes.


Sign in / Sign up

Export Citation Format

Share Document