Soil P availability, inorganic P fractions and yield effect in a calcareous soil with plastic-film-mulched spring wheat

2012 ◽  
Vol 137 ◽  
pp. 221-229 ◽  
Author(s):  
Bin Hu ◽  
Yu Jia ◽  
Zhi-hong Zhao ◽  
Feng-min Li ◽  
Kadambot H.M. Siddique
Soil Research ◽  
2020 ◽  
Vol 58 (3) ◽  
pp. 289
Author(s):  
L. B. Braos ◽  
A. C. T. Bettiol ◽  
L. G. Di Santo ◽  
M. E. Ferreira ◽  
M. C. P. Cruz

The evaluation of phosphorus (P) transformations in soil after application of manure or mineral P can improve soil management and optimise P use by plants. The objectives of the present study were to assess organic and inorganic P forms in two soils treated with dairy manure and triple superphosphate and to establish relationships between soil P fraction levels and P availability. Soil organic and inorganic P fractions were quantified using a pot experiment with two soils, a typical Hapludox and an arenic Hapludult, with three types of fertiliser treatments applied (no fertiliser application, application of dairy manure, and application of triple superphosphate, by adding 100 mg P dm–3 in the form of fertiliser in the two latter treatments) and four incubation times (15, 45, 90, and 180 days). Inorganic P was fractionated into aluminium-bound, iron-bound, occluded, and calcium-bound P. Organic P was extracted sequentially using sodium bicarbonate, hydrochloric acid, microbial biomass, sodium hydroxide, and residual organic P. After incubation, maize plants were cropped to quantify dry matter yield and absorbed P. Application of dairy manure resulted in a significant increase in most of the organic P fractions, and application of triple superphosphate led to a significant increase in inorganic P fractions. Both fertilisers raised labile organic P fractions in the two soils. The major sinks of P in Hapludox were occluded and fulvic acid-associated P. In contrast, the major sink of P in Hapludult was iron-bound P. The available P levels were stable after application of dairy manure, and decreased with time when fertilised with triple superphosphate. In the Hapludox, the organic P fractions had a significant positive correlation with P uptake by plants. The results suggest that organic P mineralisation plays a more significant role in plant P uptake in the Hapludox soil and inorganic P forms are the main contributors to plant P uptake in the Hapludult soil.


Author(s):  
Noura Ziadi ◽  
Xiangru Zhang ◽  
Bernard Gagnon ◽  
Eric Manirakiza

In recent decades, there has been a growing interest in the recycling of organic materials such as paper mill biosolids (PB) and biochar for use as soil amendments. However, the benefits of co-application of PB and biochar and its effects on soil P availability remain unknown. An incubation study was conducted on two acidic soils to assess the effect of two PB types (2.5% w/w) co-applied with three rates (0%, 2.5%, and 5% w/w) of pine (Pinus strobus L.) biochar on soil P fractions. An unfertilized control and a mineral NP fertilizer were used as a reference. Soil P fractions were determined by Hedley procedure after 2 and 16 weeks of incubation. Material fractionation indicated that the PB containing the highest total P and the lowest Al content had the highest proportion of labile P, whereas most P in the biochar was in a stable form. The incubation study revealed that the P-rich PB increased P availability in both soils to a level comparable to mineral fertilizer at the end of the incubation. The addition of biochar to PB, however, did not affect soil P availability, but the highest rate induced a conversion of P fixed to Al and Fe oxides towards recalcitrant forms, particularly in the sandy loam soil. We conclude that co-applying biochar and PB could be more beneficial than application biochar alone and soils amended with such a mixture would be expected to release part of their P slowly over a longer period of time.


2021 ◽  
Author(s):  
Lingling Zhang ◽  
Xianzhen Luo ◽  
Hans Lambers ◽  
Guihua Zhang ◽  
Nan Liu ◽  
...  

AbstractNo studies have explored how the invasive species of Mikania micranatha and Chromolaena odoratan adjust leaf phosphorus (P) among inorganic P (Pi) and organic P fractions to adapt the low soil P availability, especially under elevated CO2 concentrations ([CO2]) and nitrogen (N) deposition. Here, we address this by measuring foliar total N and P concentrations as well as functional P fractions (i.e. Pi, metabolic P, lipid P, nucleic acids P, and residual P) of both invasive species and a native species (Paederia. scandens) growing under different P supplies, N, and N+P addition under both ambient and elevated [CO2]. Phosphorus addition greatly increased plant biomass and foliar P concentrations but did not significantly affect foliar N concentration and leaf mass per unit leaf area (LMA). In response to P addition, the concentration of metabolic P increased the most, followed by that of nucleic acid P, Pi, and lipid P, in all species by an average of 754%, 82%, 53%, and 38%, respectively. However, elevated [CO2] and N addition weakened this positive effect on concentrations of foliar P fractions in the invasive species. Our results indicate that elevated [CO2] and N addition allowed the invasive species to acclimate to a low soil P availability, supporting their successful invasion, through greatly reducing P allocation to non-metabolic foliar P fractions (phospholipids and nucleic acid P) to meet their demand for metabolic P and Pi for photosynthesis, rather than altering LMA.


2021 ◽  
Author(s):  
Wenwen Zhang ◽  
Chong Wang ◽  
Nan Li ◽  
Zhongnan Xu

Abstract Aims Soil salinization is an important factor limiting plant phosphorus (P) uptake and crop production. This study aimed to investigate the effects of arbuscular mycorrhizal fungi (AMFs) and earthworms in enhancing soil P bioavailability by regulating soil salt ions and altering the soil bacterial community under salt stress. Methods Treatments with or without earthworms and with or without AMFs in a high-salinity soil were applied. Results The results showed that the maize biomass and plant P, Ca and Mg contents were significantly increased by earthworms and AMF inoculation, and the highest plant P, Ca and Mg contents were observed with earthworm application alone. Earthworms and AMFs significantly decreased the soil stable inorganic P (hydroxyapatite) proportion and increased the soil available dicalcium phosphate proportion. AMFs significantly increased soil phosphatase activity and inorganic P fraction contents. Earthworms and AMFs significantly increased soil bacterial Chao1 and phylogenetic diversity. Structural equation model analysis showed that the most important driver of soil P mineralization was soil bacterial diversity, followed by soil Ca2+ and total salt concentration. Network analysis suggested that the response of bacteria to soil Ca2+ but not salt concentration positively correlated with soil P availability. Earthworms and AMFs could stimulate certain bacteria harbouring the phoX alkaline phosphatase gene to increase soil phosphatase activity and soil P availability. Conclusions In conclusion, earthworms and AMFs could enhance soil P bioavailability by stimulating soil P-cycling bacteria to activate soil stable inorganic P and by improving the plant cation nutrient balance under salt stress.


Agropedology ◽  
2019 ◽  
Vol 27 (2) ◽  
Author(s):  
Vijay R. Jadhav ◽  
◽  
K. Karthikeyan ◽  

Inorganic P fractions in shrink-swell soils representing six soil series of Adan river basin, Darwha tehsil, Yavatmal district, Maharashtra were studied to understand the relationship between the P fractions and soil properties. These clayey soils were neutral to strongly alkaline (pH 6.70 – 9.34), calcareous and low to medium in organic carbon. The sequential extraction of inorganic soil P fractions indicated relative abundance as Ca2-P<Fe-P<Al-P<O-P<Ca8-P<Ca10-P. The plant available forms of P (Ca2-P, Al-P and Fe-P) contributed nearly 10 per cent of total inorganic P while the rest was in unavailable forms. The correlation matrix indicated that plant available forms of P had significant negative correlation with soil pH, EC and CaCO3 and significant positive correlation with organic carbon. The P fractions showed significant correlation among each other which implies that available P forms are constantly replenished by other forms of P pools in the soils.


2021 ◽  
Vol 3 ◽  
pp. e3
Author(s):  
Xin Jin ◽  
Changlu Hu ◽  
Asif Khan ◽  
Shulan Zhang ◽  
Xueyun Yang ◽  
...  

Background Diverse phosphorus (P) fractionation procedures presented varying soil P fractions, which directly affected P contents and forms, and their biological availability. Purpose To facilitate the selection of phosphorus (P) fractionation techniques, we compared two procedures based on a long-term experiment on a calcareous soil. Methods The soils containing a gradient P levels were sampled from seven treatments predictor under various long-term fertilizations. The P fractions were then separated independently with both fractionation procedures modified by Tiessen-Moir and Jiang-Gu. Results The results showed that the labile P in Jiang-Gu is significantly lower than that in Tiessen-Moir. The iron and aluminium-bounded P were greater in Jiang-Gu by a maximum of 46 mg kg−1 than Tiessen-Moir. Jiang-Gu fractionation gave similar Ca bounded P to that Tiessen-Moir did at low P level but greater contents at high P level. The two methods extracted much comparable total inorganic P. However, Tiessen-Moir method accounted less total organic P than ignition or Jiang-Gu method (the organic P (Po) estimated by subtract the total inorganic P (Pi) in Jiang-Gu fractionation from the total). P uptake by winter wheat was significantly and positively correlated with all phosphorus fractions in Jiang-Gu; Resin-P, NaHCO3-Pi, D. HCl-P, C. HCl-Pi, NaOH-Po, total-Po in Tiessen-Moir; P fraction categories of Ca-P, Fe & Al-P and total-Pi in both fractionations. Path coefficients indicated that Ca2-P in Jiang-Gu, NaHCO3-Pi and D. HCl-P in Tiessen-Moir had the higher and more significant direct contributions to P uptake among P fractions measured. Conclusions Our results suggested that Jiang-Gu procedure is a better predictor in soil P fractionation in calcareous soils, although it gives no results on organic P fractions.


2021 ◽  
Author(s):  
Zhongming Han ◽  
Jianmin Shi ◽  
Jiayin Pang ◽  
Li Yan ◽  
Patrick M Finnegan ◽  
...  

Abstract Background and aims Phosphorus (P) and nitrogen (N) are essential nutrients that frequently limit primary productivity in terrestrial ecosystems. Efficient use of these nutrients is important for plants growing in nutrient-poor environments. Plants generally reduce foliar P concentration in response to low soil P availability. We aimed to assess ecophysiological mechanisms and adaptive strategies for efficient use of P in Banksia attenuata (Proteaceae), naturally occurring on deep sand, and B. sessilis, occurring on shallow sand over laterite or limestone, by comparing allocation of P among foliar P fractions. Methods We carried out pot experiments with slow-growing B. attenuata, which resprouts after fire, and faster-growing opportunistic B. sessilis, which is killed by fire, on substrates with different P availability using a randomised complete block design. We measured leaf P and N concentrations, photosynthesis, leaf mass per area, relative growth rate, and P allocated to major biochemical fractions in B. attenuata and B. sessilis. Key results The two species had similarly low foliar total P concentrations, but distinct patterns of P allocation to P-containing fractions. The foliar total N concentration of B. sessilis was greater than that of B. attenuata on all substrates. The foliar total P and N concentrations in both species decreased with decreasing P availability. The relative growth rate of both species was positively correlated with concentrations of both foliar nucleic acid P and total N, but there was no correlation with other P fractions. Faster-growing B. sessilis allocated more P to nucleic acids than B. attenuata did, but other fractions were similar. Conclusions The nutrient-allocation patterns in faster-growing opportunistic B. sessilis and slower-growing B. attenuata revealed different strategies in response to soil P availability which matched their contrasting growth strategy.


2019 ◽  
Vol 103 (1) ◽  
pp. 43-45 ◽  
Author(s):  
Carlos Crusciol ◽  
João Rigon ◽  
Juliano Calonego ◽  
Rogério Soratto

Some crop species could be used inside a cropping system as part of a strategy to increase soil P availability due to their capacity to recycle P and shift the equilibrium between soil P fractions to benefit the main crop. The release of P by crop residue decomposition, and mobilization and uptake of otherwise recalcitrant P are important mechanisms capable of increasing P availability and crop yields.


Sign in / Sign up

Export Citation Format

Share Document