scholarly journals Elevated [CO2] concentration and nitrogen addition affects responses of foliar phosphorus fractions in invasive species to increased phosphorus supply

2021 ◽  
Author(s):  
Lingling Zhang ◽  
Xianzhen Luo ◽  
Hans Lambers ◽  
Guihua Zhang ◽  
Nan Liu ◽  
...  

AbstractNo studies have explored how the invasive species of Mikania micranatha and Chromolaena odoratan adjust leaf phosphorus (P) among inorganic P (Pi) and organic P fractions to adapt the low soil P availability, especially under elevated CO2 concentrations ([CO2]) and nitrogen (N) deposition. Here, we address this by measuring foliar total N and P concentrations as well as functional P fractions (i.e. Pi, metabolic P, lipid P, nucleic acids P, and residual P) of both invasive species and a native species (Paederia. scandens) growing under different P supplies, N, and N+P addition under both ambient and elevated [CO2]. Phosphorus addition greatly increased plant biomass and foliar P concentrations but did not significantly affect foliar N concentration and leaf mass per unit leaf area (LMA). In response to P addition, the concentration of metabolic P increased the most, followed by that of nucleic acid P, Pi, and lipid P, in all species by an average of 754%, 82%, 53%, and 38%, respectively. However, elevated [CO2] and N addition weakened this positive effect on concentrations of foliar P fractions in the invasive species. Our results indicate that elevated [CO2] and N addition allowed the invasive species to acclimate to a low soil P availability, supporting their successful invasion, through greatly reducing P allocation to non-metabolic foliar P fractions (phospholipids and nucleic acid P) to meet their demand for metabolic P and Pi for photosynthesis, rather than altering LMA.

2021 ◽  
Author(s):  
Zhongming Han ◽  
Jianmin Shi ◽  
Jiayin Pang ◽  
Li Yan ◽  
Patrick M Finnegan ◽  
...  

Abstract Background and aims Phosphorus (P) and nitrogen (N) are essential nutrients that frequently limit primary productivity in terrestrial ecosystems. Efficient use of these nutrients is important for plants growing in nutrient-poor environments. Plants generally reduce foliar P concentration in response to low soil P availability. We aimed to assess ecophysiological mechanisms and adaptive strategies for efficient use of P in Banksia attenuata (Proteaceae), naturally occurring on deep sand, and B. sessilis, occurring on shallow sand over laterite or limestone, by comparing allocation of P among foliar P fractions. Methods We carried out pot experiments with slow-growing B. attenuata, which resprouts after fire, and faster-growing opportunistic B. sessilis, which is killed by fire, on substrates with different P availability using a randomised complete block design. We measured leaf P and N concentrations, photosynthesis, leaf mass per area, relative growth rate, and P allocated to major biochemical fractions in B. attenuata and B. sessilis. Key results The two species had similarly low foliar total P concentrations, but distinct patterns of P allocation to P-containing fractions. The foliar total N concentration of B. sessilis was greater than that of B. attenuata on all substrates. The foliar total P and N concentrations in both species decreased with decreasing P availability. The relative growth rate of both species was positively correlated with concentrations of both foliar nucleic acid P and total N, but there was no correlation with other P fractions. Faster-growing B. sessilis allocated more P to nucleic acids than B. attenuata did, but other fractions were similar. Conclusions The nutrient-allocation patterns in faster-growing opportunistic B. sessilis and slower-growing B. attenuata revealed different strategies in response to soil P availability which matched their contrasting growth strategy.


Author(s):  
Noura Ziadi ◽  
Xiangru Zhang ◽  
Bernard Gagnon ◽  
Eric Manirakiza

In recent decades, there has been a growing interest in the recycling of organic materials such as paper mill biosolids (PB) and biochar for use as soil amendments. However, the benefits of co-application of PB and biochar and its effects on soil P availability remain unknown. An incubation study was conducted on two acidic soils to assess the effect of two PB types (2.5% w/w) co-applied with three rates (0%, 2.5%, and 5% w/w) of pine (Pinus strobus L.) biochar on soil P fractions. An unfertilized control and a mineral NP fertilizer were used as a reference. Soil P fractions were determined by Hedley procedure after 2 and 16 weeks of incubation. Material fractionation indicated that the PB containing the highest total P and the lowest Al content had the highest proportion of labile P, whereas most P in the biochar was in a stable form. The incubation study revealed that the P-rich PB increased P availability in both soils to a level comparable to mineral fertilizer at the end of the incubation. The addition of biochar to PB, however, did not affect soil P availability, but the highest rate induced a conversion of P fixed to Al and Fe oxides towards recalcitrant forms, particularly in the sandy loam soil. We conclude that co-applying biochar and PB could be more beneficial than application biochar alone and soils amended with such a mixture would be expected to release part of their P slowly over a longer period of time.


2012 ◽  
Vol 137 ◽  
pp. 221-229 ◽  
Author(s):  
Bin Hu ◽  
Yu Jia ◽  
Zhi-hong Zhao ◽  
Feng-min Li ◽  
Kadambot H.M. Siddique

Geoderma ◽  
2020 ◽  
Vol 375 ◽  
pp. 114470
Author(s):  
Yuexin Fan ◽  
Liuming Yang ◽  
Xiaojian Zhong ◽  
Zhijie Yang ◽  
Yanyu Lin ◽  
...  

2019 ◽  
Vol 103 (1) ◽  
pp. 43-45 ◽  
Author(s):  
Carlos Crusciol ◽  
João Rigon ◽  
Juliano Calonego ◽  
Rogério Soratto

Some crop species could be used inside a cropping system as part of a strategy to increase soil P availability due to their capacity to recycle P and shift the equilibrium between soil P fractions to benefit the main crop. The release of P by crop residue decomposition, and mobilization and uptake of otherwise recalcitrant P are important mechanisms capable of increasing P availability and crop yields.


CATENA ◽  
2021 ◽  
Vol 205 ◽  
pp. 105459
Author(s):  
Liuming Yang ◽  
Zhijie Yang ◽  
Xiaojian Zhong ◽  
Chao Xu ◽  
Yanyu Lin ◽  
...  

2018 ◽  
Vol 34 (3) ◽  
pp. 326-334 ◽  
Author(s):  
J. Yuan ◽  
L. Wang ◽  
S. Wang ◽  
Y. Wang ◽  
H. Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document