Genetic improvement of peanut in Argentina between 1948 and 2004: Links between phenology and grain yield determinants

2015 ◽  
Vol 174 ◽  
pp. 12-19 ◽  
Author(s):  
Ricardo J. Haro ◽  
Jorge Baldessari ◽  
María E. Otegui
2015 ◽  
Vol 41 (4) ◽  
pp. 613
Author(s):  
Zhong-Wei TIAN ◽  
Yong-Hui FAN ◽  
Mei YIN ◽  
Fang-Rui WANG ◽  
Jian CAI ◽  
...  

2011 ◽  
Vol 37 (10) ◽  
pp. 1752-1762 ◽  
Author(s):  
Yong ZHANG ◽  
Shi-Zhao LI ◽  
Zhen-Lu WU ◽  
Wen-Xiong YANG ◽  
Ya-Xiong YU ◽  
...  

2018 ◽  
Vol 9 (3) ◽  
pp. 894
Author(s):  
Ashok Badigannavar ◽  
G. Girish ◽  
Jayalakshmi ◽  
T.R. Ganapathi

1984 ◽  
Vol 35 (1) ◽  
pp. 1 ◽  
Author(s):  
GS Gill ◽  
WM Blacklow

A field experiment was conducted at Badgingarra, W.A., during 1981 to study competition between wheat (cv. Gamenya) and great brome (Bromus diandrus Roth.). Shoot dry matter per plant of wheat was reduced from 1.41 g per plant in wheat monoculture to 0.50 g per plant after competing for 71 days with great brome at density of 400 plants m-2. Tiller production was reduced from 605 tillers m-2 in monocultures of wheat to 336 tillers m-2 when growing in association with 400 plants m-2 of great brome. Competition with great brome reduced the concentration of nitrogen and phosphorus in wheat shoots; at Feeke's scale 3 (tillers formed) wheat plants competing with 400 plants m-2 of great brome had 3.15 � 0.09% (mean � s.e., w/w) nitrogen and 0.58% phosphorus against a concentration of 4.05 � 0.1% nitrogen and 0.77% phosphorus in the monoculture of wheat. The reduction in the nitrogen - and phosphorus concentrations in wheat shoots earlier than any significant reductions in their dry matter suggested that great brome competed with wheat for absorption of nitrogen and phosphorus. Competition with great brome also resulted in significant reduction in the grain yield (r = - 0.77) and yield determinants of wheat. Reduction in mass per grain (r = - 0.77) was probably due to competition with great brome for water during grain-filling.


2015 ◽  
Vol 178 (2) ◽  
pp. 297-305 ◽  
Author(s):  
Lijun Liu ◽  
Yiwei Xiong ◽  
Jinglong Bian ◽  
Hao Zhang ◽  
Junfei Gu ◽  
...  

2009 ◽  
Vol 147 (3) ◽  
pp. 323-332 ◽  
Author(s):  
O. SENER ◽  
M. ARSLAN ◽  
Y. SOYSAL ◽  
M. ERAYMAN

SUMMARYInformation about changes associated with advances in crop productivity is essential for understanding yield-limiting factors and developing new strategies for future breeding programmes. National bread wheat (Triticum aestivum L.) yields in Turkey have risen by an average of 20·8 kg/ha/year from 1925 to 2006. Annual gain in yield attributable to agronomic and genetic improvement averaged c. 11·6 kg/ha/year prior to 1975, but is now averaging c. 15·1 kg/ha/year. In the Mediterranean region, however, the wheat yield trend line (10·9 kg/ha/year) is c. 0·38 lower than that of Turkey. In order to understand whether such a trend was due to the cultivars released over the years, 16 bread wheat cultivars, commonly grown in the region and representing 23 years of breeding, introduction and selection (from 1976 to 1999), were grown in a randomized complete block design with three replicates across 2 years. Data were collected on maturation time, plant height, spike length, spikelet number/spike, grain number/spike, grain weight/spike, 1000 seed weight, harvest index and grain yield. None of the measured plant traits showed any historical cultivar patterns; therefore, the increase in grain yield could not be attributed to a single yield component. Several physiological traits changed during two decades of cultivar releases in the Mediterranean region that led to a genetic gain in grain yield of about 0·5% per year. Years of data and the present field study in the Mediterranean region suggested that the genetic improvement in wheat seemed inadequate and should be reinforced with modern agricultural management practices as well as technological innovations.


2021 ◽  
Author(s):  
Roselyne U. Juma ◽  
Jérôme Bartholomé ◽  
Parthiban Thathapalli Prakash ◽  
Waseem Hussain ◽  
John Damien Platten ◽  
...  

Abstract Rice genetic improvement is a key component of achieving and maintaining food security in Asia and Africa in the face of growing populations and climate change. In this effort, the International Rice Research Institute (IRRI) continues to play a critical role in creating and disseminating rice varieties with higher productivity. Due to increasing demand for rice, especially in Africa, there is a strong need to accelerate the rate of genetic improvement for grain yield.In an effort to identify and characterize the elite breeding pool of IRRI’s irrigated rice breeding program, we analyzed 102 historical yield trials conducted in the Philippines during the period 2012-2016 and representing 15,286 breeding lines (including released varieties). A mixed model approach based on the pedigree relationship matrix was used to estimate breeding values for grain yield, which ranged from 2.12 to 6.27 t·ha-1. The rate of genetic gain for grain yield was estimated at 8.75 kg·ha-1·year-1 (0.23%) for crosses made in the period from 1964 to 2014. Reducing the data to only IRRI released varieties, the rate doubled to 17.36 kg·ha-1·year-1 (0.46%). Regressed against breeding cycle the rate of gain for grain yield was 185 kg·ha-1·cycle-1 (4.95%). We selected 72 top performing lines based on breeding values for grain yield to create an elite core panel (ECP) representing the genetic diversity in the breeding program with the highest heritable yield values from which new products can be derived. The ECP closely aligns with the indica 1B sub-group of Oryza sativa that includes most modern varieties for irrigated systems. Agronomic performance of the ECP under multiple environments in Asia and Africa confirmed its high yield potential.We found that the rate of genetic gain for grain yield found in this study was limited primarily by long cycle times and the direct introduction of non-improved material into the elite pool. Consequently, the current breeding scheme for irrigated rice at IRRI is based on rapid recurrent selection among highly elite lines. In this context, the ECP constitutes an important resource for IRRI and NAREs breeders to carefully characterize and manage that elite diversity.


Sign in / Sign up

Export Citation Format

Share Document