Toxicity, uptake, and nuclear translocation of ingested micro-nanoplastics in an in vitro model of the small intestinal epithelium

2021 ◽  
pp. 112609
Author(s):  
Glen M. DeLoid ◽  
Xiaoqiong Cao ◽  
Dimitrios Bitounis ◽  
Dilpreet Singh ◽  
Paula Montero Llopis ◽  
...  
2003 ◽  
Vol 51 (27) ◽  
pp. 7884-7891 ◽  
Author(s):  
Sandra M. Kern ◽  
Richard N. Bennett ◽  
Paul W. Needs ◽  
Fred A. Mellon ◽  
Paul A. Kroon ◽  
...  

2018 ◽  
Vol 98 (3) ◽  
pp. 463-476 ◽  
Author(s):  
Namalika D. Karunaratne ◽  
Dawn A. Abbott ◽  
Ravindra N. Chibbar ◽  
Pierre J. Hucl ◽  
Curtis J. Pozniak ◽  
...  

The objective of the study was to measure the effect of wheat market class and cultivar on starch digestibility using an in vitro model that mimics the chicken digestive tract and relate it to grain characteristics. The study evaluated 18 wheat cultivars from eight western Canadian wheat classes and, each cultivar was replicated four times. Samples were subjected to gastric and small intestine (SI) digestion phases and each sample was assayed in triplicate; glucose release was measured in SI phase. Starch granule distribution, amylose, total starch, crude protein (CP), ash, and non-starch polysaccharides (NSP) were analyzed in all wheat samples. Small intestinal phase times of 15, 60, and 120 min were chosen to approximate digestion in the terminal duodenum, jejunum, and ileum. Starch digestibility of wheat classes ranged as follows: 15 min — 33.1% to 49.1%, 60 min — 80.2% to 93.3%, and 120 min — 92.4% to 97.6%. Starch digestibility positively correlated with CP, ash, NSP, and proportion of large granules, whereas it negatively correlated with total starch, and proportion of small and medium granules. In conclusion, market class and cultivar of western Canadian wheat affects both rate and extent of starch digestibility and it is related to various grain characteristics.


2010 ◽  
Vol 188 (3) ◽  
pp. 659-667 ◽  
Author(s):  
Thérèse Sergent ◽  
Neil Piront ◽  
Julie Meurice ◽  
Olivier Toussaint ◽  
Yves-Jacques Schneider

Animals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 870
Author(s):  
Haihan Zhang ◽  
Dongfeng Li ◽  
Lingbin Liu ◽  
Ling Xu ◽  
Mo Zhu ◽  
...  

The small intestine plays an important role for animals to digest and absorb nutrients. The epithelial lining of the intestine develops from the embryonic endoderm of the embryo. The mature intestinal epithelium is composed of different types of functional epithelial cells that are derived from stem cells, which are located in the crypts. Chickens have been widely used as an animal model for researching vertebrate embryonic development. However, little is known about the molecular basis of development and differentiation within the chicken small intestinal epithelium. This review introduces processes of development and growth in the chicken gut, and compares the cellular characteristics and signaling pathways between chicken and mammals, including Notch and Wnt signaling that control the differentiation in the small intestinal epithelium. There is evidence that the chicken intestinal epithelium has a distinct cellular architecture and proliferation zone compared to mammals. The establishment of an in vitro cell culture model for chickens will provide a novel tool to explore molecular regulation of the chicken intestinal development and differentiation.


2013 ◽  
Vol 19 (12) ◽  
pp. 961-969 ◽  
Author(s):  
Ziyad Jabaji ◽  
Connie M. Sears ◽  
Garrett J. Brinkley ◽  
Nan Ye Lei ◽  
Vaidehi S. Joshi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document