scholarly journals Identification of Hsc70 as an influenza virus matrix protein (M1) binding factor involved in the virus life cycle

FEBS Letters ◽  
2006 ◽  
Vol 580 (24) ◽  
pp. 5785-5790 ◽  
Author(s):  
Ken Watanabe ◽  
Takayuki Fuse ◽  
Issay Asano ◽  
Fujiko Tsukahara ◽  
Yoshiro Maru ◽  
...  
2014 ◽  
Vol 89 (5) ◽  
pp. 2792-2800 ◽  
Author(s):  
Joseph Ashour ◽  
Florian I. Schmidt ◽  
Leo Hanke ◽  
Juanjo Cragnolini ◽  
Marco Cavallari ◽  
...  

ABSTRACTPerturbation of protein-protein interactions relies mostly on genetic approaches or on chemical inhibition. Small RNA viruses, such as influenza A virus, do not easily lend themselves to the former approach, while chemical inhibition requires that the target protein be druggable. A lack of tools thus constrains the functional analysis of influenza virus-encoded proteins. We generated a panel of camelid-derived single-domain antibody fragments (VHHs) against influenza virus nucleoprotein (NP), a viral protein essential for nuclear trafficking and packaging of the influenza virus genome. We show that these VHHs can target NP in living cells and perturb NP's function during infection. Cytosolic expression of NP-specific VHHs (αNP-VHHs) disrupts virus replication at an early stage of the life cycle. Based on their specificity, these VHHs fall into two distinct groups. Both prevent nuclear import of the viral ribonucleoprotein (vRNP) complex without disrupting nuclear import of NP alone. Different stages of the virus life cycle thus rely on distinct nuclear localization motifs of NP. Their molecular characterization may afford new means of intervention in the virus life cycle.IMPORTANCEMany proteins encoded by RNA viruses are refractory to manipulation due to their essential role in replication. Thus, studying their function and determining how to disrupt said function through pharmaceutical intervention are difficult. We present a novel method based on single-domain-antibody technology that permits specific targeting and disruption of an essential influenza virus protein in the absence of genetic manipulation of influenza virus itself. Characterization of such interactions may help identify new targets for pharmaceutical intervention. This approach can be extended to study proteins encoded by other viral pathogens.


Virology ◽  
2016 ◽  
Vol 492 ◽  
pp. 187-196 ◽  
Author(s):  
O.P. Zhirnov ◽  
A.A. Manykin ◽  
J.S. Rossman ◽  
H.D. Klenk

2010 ◽  
Vol 7 (6) ◽  
pp. 427-439 ◽  
Author(s):  
Tokiko Watanabe ◽  
Shinji Watanabe ◽  
Yoshihiro Kawaoka

Cytotherapy ◽  
2003 ◽  
Vol 5 (2) ◽  
pp. 161-168 ◽  
Author(s):  
Y. Osman ◽  
M. Narita ◽  
F. Ayres ◽  
M. Takahashi ◽  
L. Alldawi ◽  
...  

2016 ◽  
Vol 90 (23) ◽  
pp. 10906-10914 ◽  
Author(s):  
James Kirui ◽  
Arindam Mondal ◽  
Andrew Mehle

ABSTRACTThe influenza A virus polymerase plays an essential role in the virus life cycle, directing synthesis of viral mRNAs and genomes. It is a trimeric complex composed of subunits PA, PB1, and PB2 and associates with viral RNAs and nucleoprotein (NP) to form higher-order ribonucleoprotein (RNP) complexes. The polymerase is regulated temporally over the course of infection to ensure coordinated expression of viral genes as well as replication of the viral genome. Various host factors and processes have been implicated in regulation of the IAV polymerase function, including posttranslational modifications; however, the mechanisms are not fully understood. Here we demonstrate that ubiquitination plays an important role in stimulating polymerase activity. We show that all protein subunits in the RNP are ubiquitinated, but ubiquitination does not significantly alter protein levels. Instead, ubiquitination and an active proteasome enhance polymerase activity. Expression of ubiquitin upregulates polymerase function in a dose-dependent fashion, causing increased accumulation of viral RNA (vRNA), cRNA, and mRNA and enhanced viral gene expression during infection. Ubiquitin expression directly affects polymerase activity independent of nucleoprotein (NP) or ribonucleoprotein (RNP) assembly. Ubiquitination and the ubiquitin-proteasome pathway play key roles during multiple stages of influenza virus infection, and data presented here now demonstrate that these processes modulate viral polymerase activity independent of protein degradation.IMPORTANCEThe cellular ubiquitin-proteasome pathway impacts steps during the entire influenza virus life cycle. Ubiquitination suppresses replication by targeting viral proteins for degradation and stimulating innate antiviral signaling pathways. Ubiquitination also enhances replication by facilitating viral entry and virion disassembly. We identify here an addition proviral role of the ubiquitin-proteasome system, showing that all of the proteins in the viral replication machinery are subject to ubiquitination and this is crucial for optimal viral polymerase activity. Manipulation of the ubiquitin machinery for therapeutic benefit is therefore likely to disrupt the function of multiple viral proteins at stages throughout the course of infection.


2021 ◽  
Vol 17 (6) ◽  
pp. e1009616
Author(s):  
Linliang Zhang ◽  
Shixiong Zhou ◽  
Majuan Chen ◽  
Jie Yan ◽  
Yi Yang ◽  
...  

The final stage of Ebola virus (EBOV) replication is budding from host cells, where the matrix protein VP40 is essential for driving this process. Many post-translational modifications such as ubiquitination are involved in VP40 egress, but acetylation has not been studied yet. Here, we characterize NEDD4 is acetylated at a conserved Lys667 mediated by the acetyltransferase P300 which drives VP40 egress process. Importantly, P300-mediated NEDD4 acetylation promotes NEDD4-VP40 interaction which enhances NEDD4 E3 ligase activity and is essential for the activation of VP40 ubiquitination and subsequent egress. Finally, we find that Zaire ebolavirus production is dramatically reduced in P300 knockout cell lines, suggesting that P300-mediated NEDD4 acetylation may have a physiological effect on Ebola virus life cycle. Thus, our study identifies an acetylation-dependent regulatory mechanism that governs VP40 ubiquitination and provides insights into how acetylation controls EBOV VP40 egress.


Sign in / Sign up

Export Citation Format

Share Document