Macrophage migration inhibitory factor (MIF)-induced signaling pathways in human endometrial stromal cells of women with and without endometriosis

2008 ◽  
Vol 90 ◽  
pp. S146-S147
Author(s):  
V. Veillat ◽  
C.N. Metz ◽  
P.H. Naccache ◽  
R. Maheux ◽  
A. Akoum
2021 ◽  
Vol 12 ◽  
Author(s):  
Yongjian Wen ◽  
Wenhao Cai ◽  
Jingyu Yang ◽  
Xianghui Fu ◽  
Lohitha Putha ◽  
...  

Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine implicated in the pathogenesis of inflammation and cancer. It is produced by various cells and circulating MIF has been identified as a biomarker for a range of diseases. Extracellular MIF mainly binds to the cluster of differentiation 74 (CD74)/CD44 to activate downstream signaling pathways. These in turn activate immune responses, enhance inflammation and can promote cancer cell proliferation and invasion. Extracellular MIF also binds to the C-X-C chemokine receptors cooperating with or without CD74 to activate chemokine response. Intracellular MIF is involved in Toll-like receptor and inflammasome-mediated inflammatory response. Pharmacological inhibition of MIF has been shown to hold great promise in treating inflammatory diseases and cancer, including small molecule MIF inhibitors targeting the tautomerase active site of MIF and antibodies that neutralize MIF. In the current review, we discuss the role of MIF signaling pathways in inflammation and cancer and summarize the recent advances of the role of MIF in experimental and clinical exocrine pancreatic diseases. We expect to provide insights into clinical translation of MIF antagonism as a strategy for treating acute pancreatitis and pancreatic cancer.


Endocrinology ◽  
2009 ◽  
Vol 150 (7) ◽  
pp. 3128-3137 ◽  
Author(s):  
Cédric Carli ◽  
Christine N. Metz ◽  
Yousef Al-Abed ◽  
Paul H. Naccache ◽  
Ali Akoum

Cyclooxygenase (COX) is the rate-limiting enzyme in the metabolic conversion of arachidonic acid to prostaglandins (PGs), including prostaglandin E2 (PGE2), a major mediator of inflammation and angiogenesis. Herein, we report that macrophage migration inhibitory factor (MIF), a potent proinflammatory and growth-promoting factor found at elevated concentrations in the peritoneal fluid of women with endometriosis and active endometriosis lesions, acts directly on ectopic endometrial cells to stimulate the synthesis of COX-2, the inducible form of COX, and the release of PGE2. MIF treatment strongly activated p38 and ERK MAPK, and specific inhibitors of both pathways completely blocked basal and MIF-induced PGE2 synthesis. Whereas p38 inhibitors negatively affected the stimulated synthesis of COX-2 and that of PGE2, ERK inhibitors only decreased the production of PGE2. These findings show for the first time a direct role for MIF in the up-regulation of COX-2 synthesis and PGE2 secretion in ectopic endometrial cells. They further indicate that whereas p38 and ERK MAPK signaling pathways both play a significant role in the regulation of basal and MIF-induced synthesis of PGE2 by ectopic endometrial cells, only p38 kinase is involved in the regulation of COX-2 expression in these cells. This suggests that MIF acts at more than one level to stimulate the synthesis of PGE2 and triggers the coordinate activation of multiple enzymes in the biosynthesis pathway. Our data provide evidence for a novel mechanism by which MIF can induce a proinflammatory phenotype in ectopic endometrial cells, and favor the establishment of endometriosis and its related clinical symptoms.


2013 ◽  
Vol 304 (2) ◽  
pp. H282-H293 ◽  
Author(s):  
Kiyokazu Koga ◽  
Agnes Kenessey ◽  
Kaie Ojamaa

Macrophage migration inhibitory factor (MIF) functions as a proinflammatory cytokine when secreted from the cell, but it also exhibits antioxidant properties by virtue of its intrinsic oxidoreductase activity. Since increased production of ROS is implicated in the development of left ventricular hypertrophy, we hypothesized that the redox activity of MIF protects the myocardium when exposed to hemodynamic stress. In a mouse model of myocardial hypertrophy induced by transverse aortic coarctation (TAC) for 10 days, we showed that growth of the MIF-deficient heart was significantly greater by 32% compared with wild-type (WT) TAC hearts and that fibrosis was increased by fourfold (2.62 ± 0.2% vs. 0.6 ± 0.1%). Circulating MIF was increased in TAC animals, and expression of MIF receptor, CD74, was increased in the hypertrophic myocardium. Gene expression analysis showed a 10-fold increase ( P < 0.01) in ROS-generating mitochondrial NADPH oxidase and 2- to 3-fold reductions ( P < 0.01) in mitochondrial SOD2 and mitochondrial aconitase activities, indicating enhanced oxidative injury in the hypertrophied MIF-deficient ventricle. Hypertrophic signaling pathways showed that phosphorylation of cytosolic glycogen synthase kinase-3α was greater ( P < 0.05) at baseline in MIF-deficient hearts than in WT hearts and remained elevated after 10-day TAC. In the hemodynamically stressed MIF-deficient heart, nuclear p21CIP1 increased sevenfold ( P < 0.01), and the cytosolic increase of phospho-p21CIP1 was significantly greater than in WT TAC hearts. We conclude that MIF antagonizes myocardial hypertrophy and fibrosis in response to hemodynamic stress by maintaining a redox homeostatic phenotype and attenuating stress-induced activation of hypertrophic signaling pathways.


Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1430 ◽  
Author(s):  
Rosita Russo ◽  
Nunzia Matrone ◽  
Valentina Belli ◽  
Davide Ciardiello ◽  
Mariangela Valletta ◽  
...  

Background: The clinical impact of the monoclonal antibody cetuximab targeting the EGFR in colorectal cancer (CRC) is widely recognized. Nevertheless, the onset of cetuximab resistance is a serious issue that limits the effectiveness of this drug in targeted therapies. Unraveling the molecular players involved in cancer resistance is the first step towards the identification of alternative signaling pathways that can be targeted to circumvent resistance mechanisms restoring the efficacy of therapeutic treatments in a tailored manner. Methods: By applying a nanoLC-MS/MS TMT isobaric labeling-based approach, we have delineated a molecular hallmark of cetuximab-resistance in CRC. Results: We identified macrophage migration inhibitory factor (MIF) as a molecular determinant capable of triggering cancer resistance in sensitive human CRC cells. Blocking the MIF axis in resistant cells by a selective MIF inhibitor restores cell sensitivity to cetuximab. The combined treatment with cetuximab and the MIF inhibitor further enhanced cell growth inhibition in CRC resistant cell lines with a synergistic effect depending on inhibition of key downstream effectors of the MAPK and AKT signaling pathways. Conclusions: Collectively, our results suggest the association of MIF signaling and its dysregulation to cetuximab drug resistance, paving the way to the development of personalized combination therapies targeting the MIF axis.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3849-3849
Author(s):  
Maciej Tarnowski ◽  
Rui Liu ◽  
Joanna Tarnowska ◽  
Janina Ratajczak ◽  
Robert Mitchell ◽  
...  

Abstract Abstract 3849 Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma of adolescents and children and frequently infiltrates the bone marrow (BM) to the degree that it mimics acute lymphoblastic leukemia. Here we show that human RMS cells highly express and secrete the small chemokine, macrophage migration inhibitory factor (MIF). MIF overexpression has been observed in several tumors and is implicated in oncogenic transformation and tumor progression. MIF activates CXCR2 and CD74 receptors, and surprisingly, as recently reported, may also bind to the stromal-derived factor-1 (SDF-1)–binding receptor CXCR4 (Nat Med 2007;13:587). Here we report that RMS-secreted MIF i) induces phosphorylation of MAPKp42/44 and AKT, ii) stimulates RMS cell adhesion, and iii) enhances tumor vascularization. Furthermore, since RMS cells employed in our studies do not express CXCR2 and CD74 receptors, the biological effects of MIF on RMS cells depend on its interaction with CXCR4. Moreover, as we report here for the first time, receptor internalization/binding studies reveal that MIF may also engage another SDF-1–binding receptor (CXCR7) as well. Since bone marrow fibroblasts highly express the MIF-binding receptor CXCR2, we became interested in the potential role of the MIF-mediated interaction between RMS and stromal cells and, to our surprise, observed that RMS-secreted MIF decreases recruitment of stromal fibroblasts to expanding sarcomas. In support of this finding, downregulation of MIF in RMS cells inoculated into immunodeficient mice lead to formation of larger tumors that displayed higher stromal-cell support. Based on these observations, we postulate that MIF is an important autocrine/paracrine factor that stimulates both CXCR4 and CXCR7 receptors to enhance the adhesiveness of RMS cells. We also envision that MIF in those situations when it is locally secreted by a growing tumor, may desensitize CXCR4 and CXCR7 receptors expressed on the tumor cells and thus prevents their responsiveness to SDF-1 secreted at potential future sites of metastasis and thereby prevents egress of cancer cells into the circulation. On the other hand, despite its obvious pro-angiopoietic effects, MIF inhibits recruitment of stromal cells to the growing tumor. This MIF-mediated impaired recruitment of stromal elements significantly slows down as evidenced by our in vivo xenograft studies tumor growth/expansion. Based on this, we suggest that therapeutic inhibition of MIF in expanding solid tumors may accelerate both metastasis and tumor growth. Thus, the potential application of MIF inhibitors for treatment of MIF-secreting tumors should be reconsidered. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document