Experimental studies and theoretical analysis of the residual properties of three-span small-scale continuous concrete slabs after a fire

2021 ◽  
pp. 103481
Author(s):  
Yong Wang ◽  
Gongchen Wang ◽  
Zhaohui Huang ◽  
Yuner Huang ◽  
Benmiao Wang ◽  
...  
2019 ◽  
Vol 18 (1) ◽  
pp. 163-173
Author(s):  
A. Yu. Botashev ◽  
R. A. Bayramukov

In many industries, the share of small-scale production plants is significant. In these conditions, compared with traditional methods of pressure treatment, pulse pressure treatment methods, one of the varieties of which is gas stamping, are more efficient. However, the known devices of gas stamping provide mainly stamping of thin-walled parts. To expand the technological capabilities of gas stamping, the authors developed a gas stamping device with a piston pressure multiplier, in which heating and deformation of the stamping workpiece is carried out using the energy of combustion of fuel mixtures in the combustion chamber, in the working cylinder and in the cavity of the matrix. This article is devoted to the study of the workflow of this device. Theoretical analysis of the workflow was carried out, and, as a result, a pattern was determined for the variation of the pressure that performs the stamping process in the working cylinder. In particular, it was found that at the final stage of the stamping process, due to the energy of combustion of the fuel mixture, the pressure in the working cylinder increases 1.5...2 times, which allows a significant increase in the thickness of the parts to be stamped. An experimental gas stamping device with a piston pressure multiplier was developed, and experimental studies were carried out. The studies confirmed the main results of the theoretical analysis: the discrepancy between the theoretical and experimental values of the degree of pressure multiplication in the working cylinder does not exceed 11%.


Author(s):  
Volodymyr Cherednikov ◽  
Olena Voskobiinyk ◽  
Olexandra Cherednikova

In this article the possibility of applying the warping model offered by V. G. Piskunov, A. V. Goryk and V. N. Cherednikov for analyzing polystyrene concrete slabs with profiled steel sheeting is considered. The adequacy of the offered model was verified by comparing the experimental and calculated deflections of the slab. Test specimens of polystyrene concrete slabs with profiled steel sheeting (PCSPSS) were made for experimental studies and then mechanical properties of the slab components – the polystyrene concrete and the profiled steel sheeting – were determined. Then the behaviour of slabs under a load was studied. The calculation of the warping model of PCSPSS was done at the same time. The obtained results have proved the possibility of applying of the offered warping model for analysis of PCSPSS. It is proposed to use the considered model for further study of the stress-strained state of inhomogeneous slabs.


2021 ◽  
Author(s):  
Yash Lokare

A quantitative description of the violation of the second law of thermodynamics in relatively small classical systems and over short time scales comes from the fluctuation-dissipation theorem. It has been well established both theoretically and experimentally, the validity of the fluctuation theorem to small scale systems that are disturbed from their initial equilibrium states. Some experimental studies in the past have also explored the validity of the fluctuation theorem to nonequilibrium steady states at long time scales in the asymptotic limit. To this end, a theoretical and/or purely numerical model of the integral fluctuation theorem has been presented. An approximate general expression for the dissipation function has been derived for accelerated colloidal systems trapped/confined in power-law traps. Thereafter, a colloidal particle trapped in a harmonic potential (generated by an accelerating one-dimensional optical trap) and undergoing Brownian motion has been considered for the numerical study. A toy model of a quartic potential trap in addition to the harmonic trap has also been considered for the numerical study. The results presented herein show that the integral fluctuation theorem applies not only to equilibrium steady state distributions but also to nonequilibrium steady state distributions of colloidal systems in accelerated frames of reference over long time scales.


2021 ◽  
Author(s):  
Yash Lokare

Abstract A quantitative description of the violation of the second law of thermodynamics in relatively small classical systems and over short time scales comes from the fluctuation-dissipation theorem. It has been well established both theoretically and experimentally, the validity of the fluctuation theorem to small scale systems that are disturbed from their initial equilibrium states. Some experimental studies in the past have also explored the validity of the fluctuation theorem to nonequilibrium steady states at long time scales in the asymptotic limit. To this end, a theoretical and/or purely numerical model of the integral fluctuation theorem has been presented. An approximate general expression for the dissipation function has been derived for accelerated colloidal systems trapped/confined in power-law traps. Thereafter, a colloidal particle trapped in a harmonic potential (generated by an accelerating one-dimensional optical trap) and undergoing Brownian motion has been considered for the numerical study. A toy model of a quartic potential trap in addition to the harmonic trap has also been considered for the numerical study. The results presented herein show that the integral fluctuation theorem applies not only to equilibrium steady state distributions but also to nonequilibrium steady state distributions of colloidal systems in accelerated frames of reference over long time scales.


2020 ◽  
Vol 30 (08) ◽  
pp. 1555-1590 ◽  
Author(s):  
L. Beirão da Veiga ◽  
F. Brezzi ◽  
L. D. Marini ◽  
A. Russo

In this paper, we tackle the problem of constructing conforming Virtual Element spaces on polygons with curved edges. Unlike previous VEM approaches for curvilinear elements, the present construction ensures that the local VEM spaces contain all the polynomials of a given degree, thus providing the full satisfaction of the patch test. Moreover, unlike standard isoparametric FEM, this approach allows to deal with curved edges at an intermediate scale, between the small scale (treatable by homogenization) and the bigger one (where a finer mesh would make the curve flatter and flatter). The proposed method is supported by theoretical analysis and numerical tests.


2014 ◽  
Vol 70 (a1) ◽  
pp. C97-C97
Author(s):  
Keisuke Nagao ◽  
Kazue Nishimoto ◽  
Tomoaki Inuduka ◽  
Keiichi Edagawa

Quasicrystals possess quasiperiodicity, where the structure cannot be described simply by the repetition of unit cell like conventional crystals. This fact raises the question of how quasicrystals grow, i.e., what physical mechanism makes the growth of quasicrystals possible. While crystals can grow by copying a unit cell via local atomic interactions, nonlocal structural information seems to be required in the growth of quasicrystals. This problem has attracted much attention ever since the first discovery of a quasicrystal in 1984, and several theoretical growth models [1] have been proposed. However, no experimental studies have so far been reported, and it is still unclear whether these theoretical growth models apply to real quasicrystals. In the present study, we have conducted in-situ high-temperature electron microscopic (HRTEM: High-Resolution Transmission Electron Microscopy) observations of the growth process of decagonal quasicrystals to elucidate the growth mechanism. The growth processes of a decagonal quasicrystal of Al70.8Ni19.7Co9.5were observed by HRTEM in the temperature range 1073-1173K. Tiling patterns with edge length of about 2nm were constructed from a series of HRTEM images. They were analysed in the framework of the projection method. Here, we followed the procedures in our previous work [2]. We have already reported the results of some observations and analyses elsewhere [3]. However, the growth processes of them were on a small scale, and the results were indefinite. Recently, we have succeeded in observing a growth process on a massive scale. In this paper, we present the results of this observation and subsequent analyses, and discuss the growth mechanism of the quasicrystal.


Author(s):  
Sagil James ◽  
Rinkesh Contractor ◽  
Chris Veyna ◽  
Galen Jiang

Dye-Sensitized Solar Cells (DSSC) are third generation solar cells used as an alternative to c-Si solar cells. DSSC are mostly flexible, easier to handle and are less susceptible to damage compared to c-Si solar cells. Additionally, DSSC is an excellent choice for indoor application as they perform better under diverse light condition. Most DSSCs are made of liquid medium sandwiched between two conductive polymer layers. However, DSSCs have significantly lower efficiencies compared to silicon solar cells. Also, use of liquid medium resulting in leaking of liquid, and occasional freezing during cold weather, and thermal expansion during hot weather conditions. DSSC can be manufactured in small quantities using relatively inexpensive solution-phase techniques such as roll-to-roll processing and screen printing technology. However, scaling-up the DSSC manufacturing from small-scale laboratory tests to sizeable industrial production requires better and efficient manufacturing processes. This research studies the feasibility of using additive manufacturing technique to fabricate electrodes of DSSC. The study aims to overcome the limitations of DSSCs including preventing leakage and providing more customized design. Experimental studies are performed to evaluate the effects of critical process parameters affecting the quality of electrodes for DSSC. Volume resistivity test is performed to evaluate the efficiency of the electrodes. In this study, the electrodes of DSSC are successfully fabricated using Fused Disposition Modeling (FDM) 3D printing technique. The results of this study would enable additive manufacturing technology towards rapid commercialization of DSSC technology.


2018 ◽  
Vol 163 ◽  
pp. 02004 ◽  
Author(s):  
Izabela Hager ◽  
Katarzyna Mróz ◽  
Tomasz Tracz

This article presents results of fire spalling tests on small concrete slabs and studies of material parameters that may increase its occurrence. Experimental techniques enabling to study and determination of material features are presented and discussed. Experimental studies on spalling behaviour of elements were carried out on seven different concrete mixes with constant content of cement paste and mortar. Research aimed at determining influence of the following parameters: w/c ratio (0.30; 0.45; 0.60), cement type (CEM I, CEM III) and type of aggregates (riverbed gravel, granite, basalt) on fire concrete spalling. Paper discusses also the influence of cold rim that forms while testing slab-like element is subjected to one-side heating.


Author(s):  
Minghu Jiang ◽  
Dehai Chen ◽  
Lixin Zhao ◽  
Liying Sun

Developing state-of-the-art and separating principle of deoiling hydrocyclones are introduced. By theoretical analysis, the ways to enhance hydrocyclone’s separation efficiency are described. One way is to inject air into the hydrocyclones so as to combine with oil to form oil-gas compound body, and then increase de-oiling efficiency. By means of injecting air into large cone segment, or fine cone segment of the hydrocyclone, experiments were carried out. It is found that the best injecting part is fine cone segment. Further experimental studies were continued for confirming detail part in fine cone segment, which includes one-third segment and two-thirds segment for the sake of research. Results show that the best air-injecting part is the first one-third segment of fine cone segment. This conclusion would be useful for understanding of air-injected de-oiling hydrocyclone’s separating process, and for its design and applications.


Author(s):  
Youn-Ju Jeong ◽  
Young-Jun You ◽  
Du-Ho Lee ◽  
Min-Su Park

In this study, in order to evaluate water damping effects of hybrid pontoon system with cylinders, experimental studies were carried out. At first, in order to evaluate oscillatory motions, three small-scale models of hybrid, tapered, and pontoon were fabricated and tested under the still-water condition. Four acceleration gauges were attached on the top edges and acceleration of top edge were measured during the oscillation. Then, oscillatory motions of oscillation period and stabilizing time to steady-state were analyzed. Finally, based on the oscillatory motions, damping properties of the logarithmic decrement, damping ratio, and natural frequency of damped system were calculated and compared with each other. As the results of this study, it was found that hybrid model presented about 3.67 times higher decay rate of amplitude of the oscillatory motion than the pontoon model. Also, hybrid model presented about 3.67 times higher damping ratio than the pontoon model. Whereas the natural frequency of the pontoon and tapered model were nearly same with the natural frequency of undamped system, that of the hybrid model presented some difference with the that of the undamped system. In addition, periods of floating body at the wet mode presented about 1.5∼3.0 times longer periods than the dry mode, and it was expected that there was not possibility for the resonance. Therefore, it was expected that the hybrid model of this study should contribute to improve serviceability and safety of offshore floating structures as decreasing oscillatory motions.


Sign in / Sign up

Export Citation Format

Share Document