scholarly journals Genetic mixed stock analysis of an interceptory Atlantic salmon fishery in the Northwest Atlantic

2016 ◽  
Vol 174 ◽  
pp. 234-244 ◽  
Author(s):  
Ian R. Bradbury ◽  
Lorraine C. Hamilton ◽  
Gerald Chaput ◽  
Martha J. Robertson ◽  
Herlé Goraguer ◽  
...  
2016 ◽  
Vol 73 (9) ◽  
pp. 2311-2321 ◽  
Author(s):  
Ian R. Bradbury ◽  
Lorraine C. Hamilton ◽  
Timothy F. Sheehan ◽  
Gerald Chaput ◽  
Martha J. Robertson ◽  
...  

Abstract The West Greenland Atlantic Salmon (Salmo salar) fishery represents the largest remaining mixed-stock fishery for Atlantic Salmon in the Northwest Atlantic and targets multi-sea-winter (MSW) salmon from throughout North America and Europe. We evaluated stock composition of salmon harvested in the waters off West Greenland (n = 5684 individuals) using genetic mixture analysis and individual assignment to inform conservation of North American populations, many of which are failing to meet management targets. Regional contributions to this fishery were estimated using 2169 individuals sampled throughout the fishery between 2011 and 2014. Of these, 22% were identified as European in origin. Major North American contributions were detected from Labrador (∼20%), the Southern Gulf/Cape Breton (29%), and the Gaspe Peninsula (29%). Minor contributions (∼5%) were detected from Newfoundland, Ungava, and Quebec regions. Region-specific catches were extrapolated using estimates of composition and fishery catch logs and harvests ranged from 300 to 600 and 2000 to 3000 individuals for minor and major constituents, respectively. To evaluate the temporal stability of the observed fishery composition, we extended the temporal coverage through the inclusion of previously published data (1995–2006, n = 3095) and data from archived scales (1968–1998, n = 420). Examination of the complete time-series (47 years) suggests relative stability in stock proportions since the late 1980s. Genetic estimates of stock composition were significantly associated with model-based estimates of returning MSW salmon (individual years r = 0.69, and overall mean r = 0.96). This work demonstrates that the analysis of both contemporary and archived samples in a mixed-stock context can disentangle levels of regional exploitation and directly inform assessment and conservation of Atlantic Salmon in the West Greenland interceptory Atlantic Salmon fishery.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5651
Author(s):  
Karina Jones ◽  
Michael Jensen ◽  
Graham Burgess ◽  
Johanna Leonhardt ◽  
Lynne van Herwerden ◽  
...  

A solid understanding of the spatial ecology of green turtles (Chelonia mydas) is fundamental to their effective conservation. Yet this species, like many marine migratory species, is challenging to monitor and manage because they utilise a variety of habitats that span wide spatio-temporal scales. To further elucidate the connectivity between green turtle rookeries and foraging populations, we sequenced the mtDNA control region of 278 turtles across three foraging sites from the northern Great Barrier Reef (GBR) spanning more than 330 km: Cockle Bay, Green Island and Low Isles. This was performed with a newly developed assay, which targets a longer fragment of mtDNA than previous studies. We used a mixed stock analysis (MSA), which utilises genetic data to estimate the relative proportion of genetically distinct breeding populations found at a given foraging ground. Haplotype and nucleotide diversity was also assessed. A total of 35 haplotypes were identified across all sites, 13 of which had not been found previously in any rookery. The MSA showed that the northern GBR (nGBR), Coral Sea (CS), southern GBR (sGBR) and New Caledonia (NC) stocks supplied the bulk of the turtles at all three sites, with small contributions from other rookeries in the region. Stock contribution shifted gradually from north to south, although sGBR/CS stock dominated at all three sites. The major change in composition occured between Cockle Bay and Low Isles. Our findings, together with other recent studies in this field, show that stock composition shifts with latitude as a natural progression along a coastal gradient. This phenomenon is likely to be the result of ocean currents influencing both post-hatchling dispersal and subsequent juvenile recruitment to diverse coastal foraging sites.


2005 ◽  
Vol 62 (1) ◽  
pp. 131-143 ◽  
Author(s):  
G. Chaput ◽  
C.M. Legault ◽  
D.G. Reddin ◽  
F. Caron ◽  
P.G. Amiro

Abstract The paper presents the data, the models, and the approach for the provision of management advice for a high seas mixed stock fishery on Atlantic salmon (Salmo salar L.). The approach incorporates observation errors, model uncertainty, and considers a possible shift in the productivity of Atlantic salmon. The risk analysis framework further incorporates uncertainty in the fishery harvest characteristics and presents the catch advice as probabilities of meeting or exceeding the conservation objectives relative to catch options. There is very strong evidence from the analyses that there has been a phase shift in productivity of Atlantic salmon of North American origin in the Northwest Atlantic. The change in productivity likely resulted from a change in marine survival which occurred in the early 1990s and has persisted to date. When the uncertainties in the input data are considered, the most parsimonious models suggest that there has been a shift in absolute abundance independent of variations in the spawner index contributing to the recruitment. There continues to be a large amount of uncertainty in the measures of abundance and population dynamics of Atlantic salmon. Uncertainty in the understanding of population dynamics does not necessarily equate to uncertainty in management advice. If model results suggest that spawning objectives are unattainable even when harvest rates are zero, then any harvest level will either accelerate the rate of decline if the model prediction is correct or diminish the probability of recovery if the model prediction is wrong.


Author(s):  
X Bordeleau ◽  
S A Pardo ◽  
G Chaput ◽  
J April ◽  
B Dempson ◽  
...  

AbstractIteroparity is a bet-hedging strategy where individuals spread the risk of reproductive failure over time. The occurrence of iteroparity (i.e. proportion of repeat spawners in annual returns) varies among Atlantic salmon (Salmo salar) populations, yet information on its ecological importance is limited. We compiled multi-decadal time series on the spawning history composition of Atlantic salmon annual returns across ten populations of the northwest Atlantic and West Greenland mixed-stock fishery landings to: (i) describe spatio-temporal patterns of iteroparity at the continental scale; (ii) quantify the reproductive contributions of repeat spawners; and (iii) test the hypothesis that iteroparity acts as a population safeguard during periods of low recruitment through repeat spawners’ contributions. Despite high variability in the representation of repeat spawners among populations and years (range: 0–24.7%; average: 5.0%), we identified broad-scale spatio-temporal shifts in iteroparity, with increases in mid-latitudinal and northern populations (from 3.1% to 7.6%) and declines in southern areas (from 4.1% to 2.7%), between the 1971–1992 and 1993–2017 periods. Our findings highlight the potential for increased prevalence of iteroparity when threats are mitigated (e.g. fishing pressure), with measurable benefits to population processes manifested by the high reproductive contributions of repeat spawners, especially in years of low maiden spawner abundance.


2015 ◽  
Vol 42 (6) ◽  
pp. 488 ◽  
Author(s):  
Tyffen C. Read ◽  
Nancy N. FitzSimmons ◽  
Laurent Wantiez ◽  
Michael P. Jensen ◽  
Florent Keller ◽  
...  

Context Migratory species are known to pose a challenge for conservation because it is essential to understand their complex life history in order to implement efficient conservation actions. Aims In New Caledonia, large seagrass habitats in the Grand Lagon Sud (GLS) are home to resident green turtles (Chelonia mydas) of unknown origins. To assess the stock composition in the GLS, 164 foraging turtles were sampled for genetic analysis of ~770 base pairs of the mitochondrial DNA (mtDNA) control region. Methods Foraging turtles ranging in size from 48.0 to 108.4 cm curved carapace length were captured at five different sites within the GLS between September 2012 and December 2013. To provide baseline data for mixed stock analysis, published data from rookeries were used in addition to 105 samples collected at rookeries in the d’Entrecasteaux Islands and Chesterfield Islands in New Caledonia and at Malekula Island in Vanuatu. Exact tests of population differentiation and pairwise FST estimates were used to test for differences in mtDNA haplotype frequencies. Key results These analyses indicated that rookeries in the d’Entrecasteaux Islands and Vanuatu form unique management units and that the Chesterfield Islands rookeries are linked to the Coral Sea management unit. Mixed stock analysis indicated the highest proportion (mean = 0.63) of foraging turtles originate from the d’Entrecasteaux stock. Conclusions The larger contribution is estimated to be from a large rookery from New Caledonia, but smaller contributions are suggested from other rookeries in the South Pacific. Implications Marine conservation policies in New Caledonia need to consider the links between the foraging and nesting populations of C. mydas in New Caledonia and other rookeries and foraging grounds in the Coral Sea.


Sign in / Sign up

Export Citation Format

Share Document