Experimental study of discharge formulas for rectangular sharp-crested weirs under free flow condition

Author(s):  
Junxiu Li ◽  
Jiuning Han
2020 ◽  
Vol 38 (12A) ◽  
pp. 1783-1789
Author(s):  
Jaafar S. Matooq ◽  
Muna J. Ibraheem

 This paper aims to conduct a series of laboratory experiments in case of steady-state flow for the new size 7 ̋ throat width (not presented before) of the cutthroat flume. For this size, five different lengths were adopted 0.535, 0.46, 0.40, 0.325 and 0.27m these lengths were adopted based on the limitations of the available flume. The experimental program has been followed to investigate the hydraulic characteristic and introducing the calibrated formula for free flow application within the discharge ranged between 0.006 and 0.025 m3/s. The calibration result showed that, under suitable operation conditions, the suggested empirical formulas can accurately predict the values of discharge within an error ± 3%.


Author(s):  
Chiyuki Nakamata ◽  
Yoji Okita ◽  
Takashi Yamane ◽  
Yoshitaka Fukuyama ◽  
Toyoaki Yoshida

Cooling effectiveness of an impingement cooling with array of racetrack-shaped impingement holes is investigated. Two types of specimens are investigated. One is a plain target plate and the other is a plate roughened with bump type elements. Sensitivity of relative location of bump to impingement hole on the cooling effectiveness is also investigated. Experiments are conducted under three different mainflow Reynolds numbers ranging from 2.6×105 to 4.7×105, with four different cooling air Reynolds numbers for each main flow condition. The cooling air Reynolds numbers are in the range from 1.2×103 to 1.3×104.


2014 ◽  
Vol 37 (23) ◽  
pp. 3555-3563 ◽  
Author(s):  
Jian Yan ◽  
Cheng-Zhang Yang ◽  
Qiang Zhang ◽  
Xiao-Ping Liu ◽  
Fan-Zhi Kong ◽  
...  

1998 ◽  
Vol 19 (7) ◽  
pp. 1231-1233 ◽  
Author(s):  
Haibo Wang ◽  
Zhiyuan Zhang ◽  
Yuanda Jiang ◽  
Hanji Wu

Author(s):  
S. Satish Kumar ◽  
Dilipkumar Bhanudasji Alone ◽  
Shobhavathy M. Thimmaiah ◽  
Janaki Rami Reddy Mudipalli ◽  
Ranjan Ganguli ◽  
...  

Detailed steady and unsteady experimental measurements and analysis were performed on a Single stage Transonic Axial Compressor with asymmetric rotor tip clearance for studying the compressor stall phenomena. The installed compressor had asymmetric tip clearance around the rotor casing varying from about 0.65mm to 1.25mm. A calibrated 5-hole aerodynamic probe was traversed radially at exit of rotor and showed the characteristics of increased flow angle at lower mass flow rates for all the speeds. Mach number distribution and boundary layer effects were also clearly captured. Unsteady measurements for velocity were carried out to study the stall cell behavior using a single component calibrated hotwire probe oriented in axial and tangential directions for choke/free flow and near stall conditions. The hotwire probe was traversed radially across the annulus at inlet to the compressor and showed that the velocity fluctuations were dissimilar when probe was aligned axial and tangential to the flow. Averaged velocities across the annulus showed the reduction in velocity as stall was approached. Axial mean flow velocity decreased across the annulus for all the speeds investigated. Tangential velocity at free flow condition was higher at the tip region due to larger radius. At stall condition, the tangential velocity showed decreased velocities at the tip and slightly increased velocities at the hub section indicating that the flow has breakdown at the tip region of the blade and fluid is accelerated below the blockage zone. The averaged turbulent intensity in axial and tangential flow directions increased from free flow to stall condition for all compressor rated speeds. Fast Fourier Transform (FFT) of the raw signals at stall flow condition showed stall cell and its corresponding frequency of occurrence. The stalling frequency of about half of rotational speed of the rotor along with large tip clearance suggests that modal type stall inception was occurring.


Sign in / Sign up

Export Citation Format

Share Document