The carbon consumption pattern of the spoilage yeast Brettanomyces bruxellensis in synthetic wine-like medium

2018 ◽  
Vol 73 ◽  
pp. 39-48 ◽  
Author(s):  
Brendan D. Smith ◽  
Benoit Divol
2017 ◽  
Vol 27 (3) ◽  
pp. 147-158 ◽  
Author(s):  
Liliana Godoy ◽  
Evelyn Silva-Moreno ◽  
Wladimir Mardones ◽  
Darwin Guzman ◽  
Francisco A. Cubillos ◽  
...  

Wine production is an important commercial issue for the liquor industry. The global production was estimated at 275.7 million hectoliters in 2015. The loss of wine production due to <i>Brettanomyces bruxellensis </i>contamination is currently a problem. This yeast causes a “horse sweat” flavor in wine, which is an undesired organoleptic attribute. To date, 6 <i>B. bruxellensis </i>annotated genome sequences are available (LAMAP2480, AWRI1499, AWRI1608, AWRI1613, ST05.12/22, and CBS2499), and whole genome comparisons between strains are limited. In this article, we reassembled and reannotated the genome of <i>B. bruxellensis</i> LAMAP2480, obtaining a 27-Mb assembly with 5.5 kb of N50. In addition, the genome of <i>B. bruxellensis</i> LAMAP2480 was analyzed in the context of spoilage yeast and potential as a biotechnological tool. In addition, we carried out an exploratory transcriptomic analysis of this strain grown in synthetic wine. Several genes related to stress tolerance, micronutrient acquisition, ethanol production, and lignocellulose assimilation were found. In conclusion, the analysis of the genome of <i>B. bruxellensis</i> LAMAP2480 reaffirms the biotechnological potential of this strain. This research represents an interesting platform for the study of the spoilage yeast <i>B. bruxellensis</i>.


Microbiology ◽  
2009 ◽  
Vol 155 (2) ◽  
pp. 624-634 ◽  
Author(s):  
A. Santos ◽  
M. San Mauro ◽  
E. Bravo ◽  
D. Marquina

Pichia membranifaciens CYC 1086 secretes a killer toxin (PMKT2) that is inhibitory to a variety of spoilage yeasts and fungi of agronomical interest. The killer toxin in the culture supernatant was concentrated by ultrafiltration and purified to homogeneity by two successive steps, including native electrophoresis and HPLC gel filtration. Biochemical characterization of the toxin showed it to be a protein with an apparent molecular mass of 30 kDa and an isoelectric point of 3.7. At pH 4.5, optimal killer activity was observed at temperatures up to 20 °C. Above approximately this pH, activity decreased sharply and was barely noticeable at pH 6. The toxin concentrations present in the supernatant during optimal production conditions exerted a fungicidal effect on a variety of fungal and yeast strains. The results obtained suggest that PMKT2 has different physico-chemical properties from PMKT as well as different potential uses in the biocontrol of spoilage yeasts. PMKT2 was able to inhibit Brettanomyces bruxellensis while Saccharomyces cerevisiae was fully resistant, indicating that PMKT2 could be used in wine fermentations to avoid the development of the spoilage yeast without deleterious effects on the fermentative strain. In small-scale fermentations, PMKT2, as well as P. membranifaciens CYC 1086, was able to inhibit B. bruxellensis, verifying the biocontrol activity of PMKT2 in simulated winemaking conditions.


2008 ◽  
Vol 114 (1) ◽  
pp. 69-75 ◽  
Author(s):  
Pascal Barbin ◽  
Jean-Luc Cheval ◽  
Jean-François Gilis ◽  
Pierre Strehaiano ◽  
Patricia Taillandier

2014 ◽  
Vol 65 (1) ◽  
pp. 321-329 ◽  
Author(s):  
Tiziana Mariarita Granato ◽  
Diego Romano ◽  
Ileana Vigentini ◽  
Roberto Carmine Foschino ◽  
Daniela Monti ◽  
...  

OENO One ◽  
2016 ◽  
Vol 50 (4) ◽  
Author(s):  
Cédric Longin ◽  
Frédérique Julliat ◽  
Virginie Serpaggi ◽  
Julie Maupeu ◽  
Geoffrey Bourbon ◽  
...  

<p style="text-align: justify;"><em>Brettanomyces bruxellensis</em> is well adapted to high ethanol concentrations and low pH which allows it to develop in difficult environments, such as wine. <em>B. bruxellensis</em> is mainly found in red wine and is regarded as a spoilage yeast due to its production of ethylphenols and other compounds responsible for organoleptic defects. The detection and quantification of this yeast is essential to preventing wine spoilage. Several specific detection and quantification kits based on real time quantitative PCR are commercially available. Although these kits are frequently used by private enological and research laboratories, no scientific report on the reliability and performance of these kits, including inter-laboratory and inter-assay comparisons have been published. The aim of this work was to compare available kits to quantify <em>B</em>. <em>bruxellensis</em> in red wine to classical method (plate counting on selective medium) in an interlaboratory study. Three different commercial kits were tested on three different wines from Bordeaux, Côtes du Rhône, and Burgundy inoculated with <em>B</em>. <em>bruxellensis </em>at four different concentrations. Five naturally contaminated wines from different French wine regions were also tested. Our results suggest that all the kits tested probably over or underestimate the quantity of <em>B</em>. <em>bruxellensis</em> in red wine and, under specific conditions, give false positives. Quantification may be very heterogeneous depending on the wine, laboratory, or population level. Underestimations or false negative results may have serious consequences for winemakers. Overestimation may be partly due to the quantification of dead cells qPCR.</p><p style="text-align: justify;">This study highlights that quantification of<em> B</em>. <em>bruxellensis</em> in red wine using commercial kits requires a high level of expertise in molecular biology. We recommend that all users use a microbiological internal control to validate DNA extraction yield.</p>


Author(s):  
Sandrine Rousseaux ◽  
Manon Lebleux ◽  
Hany Abdo ◽  
Louise Basmacyian ◽  
Chloé Roullier-Gall ◽  
...  

Ability to form biofilms is a potential resistance strategy, although it has not been much explored so far for the spoilage yeast Brettanomyces bruxellensis. The capacity of two strains to adhere and form biofilms on stainless steel chips in wine was studied. Using electronic microscopy, some particular structures, such as filamentous cells or chlamydospore-like structure, potentially involved in B. bruxellensis resistance were revealed. Some detachment phenomenon was identified and may be at the origin of the wine recurrent contamination.


2007 ◽  
Vol 28 (2) ◽  
pp. 76 ◽  
Author(s):  
Paul Henschke ◽  
Chris Curtin ◽  
Paul Grbin

How would you react if, upon opening that expensive bottle of red wine you had been saving for a special occasion, all you could smell was a box of Band-aid medical plasters. ?Band-aid?, or ?medicinal? aroma in red wine is but one spectrum of the (generally) negative sensory characteristics that have become synonymous with wine ?spoiled? by the yeast species Dekkera bruxellensis, and its non-sporulating form Brettanomyces bruxellensis.


Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1903
Author(s):  
Antonio J. Pérez-López ◽  
María I. Rodríguez-López ◽  
Francisco Burló ◽  
Ángel A. Carbonell-Barrachina ◽  
José A. Gabaldón ◽  
...  

Brettanomyces bruxellensis is a wine spoilage yeast that could be inactivated by pulsed light (PL); however, this technology may induce changes in the quality of this alcoholic drink. The present research aimed to determine the potential of PL to inactivate B. bruxellensis inoculated in white wine and to assess the effect of this technology on the color and aromatic profile of the wine. For this, a cocktail of B. bruxellensis strains was inoculated into the wine and its inactivation by PL was determined and fitted to a microbial inactivation model. Along with this, the effect of PL on instrument-measured color, and the volatile compounds of the wine were evaluated by GC/MS and descriptive sensory analysis, respectively. B. bruxellensis was inactivated according to the Geeraerd model including the tail effect, with a maximum inactivation of 2.10 log reduction at 10.7 J/cm2; this fluence was selected for further studies. PL affected wine color but the total color difference was below the just noticeable difference at 10.7 J/cm2. The concentration of 13 out of 15 volatile compounds decreased due to the PL, which was noticeable by the panel. It is not clear if these compounds were photolyzed or volatilized in the open reactor during treatment. In conclusion, PL is able to inactivate B. bruxellensis in white wine but the treatment impairs the volatile profile. The use of a closed reactor under turbulent flow is recommended for disaggregating yeast clumps that may cause the tailing of the inactivation curve, and to avoid the possible escape of volatile compounds during treatment.


Fermentation ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 65 ◽  
Author(s):  
Rubén Peña ◽  
Jeniffer Vílches ◽  
Camila G.-Poblete ◽  
María Angélica Ganga

Wine spoilage yeasts are one of the main issues in the winemaking industry, and the control of the Brettanomyces and Pichia genus is an important goal to reduce economic loses from undesired aromatic profiles. Previous studies have demonstrated that Candida intermedia LAMAP1790 produces antimicrobial peptides of molecular mass under 10 kDa with fungicide activity against Brettanomyces bruxellensis, without affecting the yeast Saccharomyces cerevisiae. So far, it has not been determined whether these peptides show biocontroller effect in this yeast or other spoilage yeasts, such as Pichia guilliermondii. In this work, we determined that the exposure of B. bruxellensis to the low-mass peptides contained in the culture supernatant of C. intermedia LAMAP1790 produces a continuous rise of reactive oxygen species (ROS) in this yeast, without presenting a significant effect on membrane damage. These observations can give an approach to the antifungal mechanism. In addition, we described a fungicide activity of these peptides fraction against two strains of P. guilliermondii in a laboratory medium. However, carrying out assays on synthetic must, peptides must show an effect on the growth of B. bruxellensis. Moreover, these results can be considered as a start to develop new strategies for the biocontrol of spoilage yeast.


2012 ◽  
Vol 573-574 ◽  
pp. 705-709
Author(s):  
You Zhu Li

Low-carbon consumption is one of the consumption pattern which is worthy of popularizing. At the same time, consumption itself is the behavior which is decided by consumers themselves. When the tactics to popularize are not in accordance with civilian thinking characteristics, people are instinctive to exclude the low-carbon consumption. This article summarized the civilian thinking characteristics by investigations. And then drew up the tactics of popularizing low-carbon consumption as the guiding device, in order to give civilian more reasons and environment to choose low-carbon consumption. Low-carbon consumption can more easily to be accepted widely by civilian.


Sign in / Sign up

Export Citation Format

Share Document