Disruption and molecule degradation of waxy maize starch granules during high pressure homogenization process

2018 ◽  
Vol 240 ◽  
pp. 165-173 ◽  
Author(s):  
Benxi Wei ◽  
Canxin Cai ◽  
Baoguo Xu ◽  
Zhengyu Jin ◽  
Yaoqi Tian
2018 ◽  
Vol 18 (1) ◽  
pp. 10-15
Author(s):  
Wang Yi-Wei ◽  
He Yong-Zhao ◽  
An Feng-Ping ◽  
Huang Qun ◽  
Zeng Feng ◽  
...  

In this study, Chinese yam starch-water suspension (8%) were subjected to high-pressure homogenization (HPH) at 100 MPa for increasing cycle numbers, and its effect of on the physicochemical properties of the starch was investigated. Results of the polarizing microscope observations showed that the starch granules were disrupted (i.e. greater breakdown value) after HPH treatment, followed by a decrease in cross polarization. After three HPH cycles, the crystallinity of starch decreased, while the crystal type remained unaltered. Meanwhile, the contents of rapidly digestible starch and slowly digestible starch were increased. On the contrary, resistant starch content was decreased. Our results indicate that HPH treatment resulted in reduction of starch crystallinity and increase of starch digestibility.


2003 ◽  
Vol 4 (5) ◽  
pp. 1198-1202 ◽  
Author(s):  
Jean-Luc Putaux ◽  
Sonia Molina-Boisseau ◽  
Thomas Momaur ◽  
Alain Dufresne

RSC Advances ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 3619-3625 ◽  
Author(s):  
Shuang Yang ◽  
Qiuxia Xie ◽  
Xiuyu Liu ◽  
Min Wu ◽  
Shuangfei Wang ◽  
...  

Bleached softwood pulp was used to prepare nanofibrillated cellulose (NFC) by mechanical grinding and a high-pressure homogenization process.


2000 ◽  
Vol 77 (3) ◽  
pp. 345-353 ◽  
Author(s):  
Robin Manelius ◽  
Kari Nurmi ◽  
Eric Bertoft

2014 ◽  
Vol 62 (18) ◽  
pp. 4186-4194 ◽  
Author(s):  
Yanjie Bai ◽  
Liming Cai ◽  
James Doutch ◽  
Elliot P. Gilbert ◽  
Yong-Cheng Shi

1999 ◽  
Vol 40 (4) ◽  
pp. 293-298 ◽  
Author(s):  
Martina Stolt ◽  
Nikolaos G. Stoforos ◽  
Petros S. Taoukis ◽  
Karin Autio

2021 ◽  
Author(s):  
Teck-Kim Tang ◽  
Yee-Ying Lee ◽  
Eng-Tong Phuah ◽  
Chin-Ping Tan ◽  
Sivaruby Kanagaratnam ◽  
...  

Abstract Microfibrillated cellulose (MFC) is a type of nanocellulose having multiple functionalities. Typically, MFC was produced from mechanical high pressure homogenization process. However, this process is energy intensive and the fibrous nature of MFC often causes instrument blockage. The present study aims to utilize endoglucanse enzyme as environmentally friendly approach to pretreat fiber structure prior to undergoing mechanical defibrillation for the production of MFC from corn cob. Alkaline and bleached pretreated corn cob was treated with endoglucanase Fibercare R from 0% to 2.5% before passing through high pressure homogenizer. It was found that incorporation of 0.02% of endoglucanase was sufficient to soften the corn cob cellulose and further prevent the blockage of homogenizer. Subsequently, the 0.02% endoglucanse treated corn cob was passed through different cycles of homogenization from 0 cycle to 10 cycle for MFC production. It was observed that the water retention, zeta potential and shear viscosity of the MFC increases with homogenization cycle. MFC produced had a gel like consistency. Next, emulsifying stabilizing properties of MFC produced from cycle 0 to cycle 10 as well as their amount from 0 % to 1% were also assessed. Increase in homogenization cycle and the amount of MFC promote emulsion stability as observed from the low creaming index which is mainly attributed to the high shear viscosity and G’G’’ crossover of the emulsion. In all, the MFC derived from corn cob via enzymatic coupled with high pressure homogenization process has the potential to be used as gel like stabilizer in oil-in-water food emulsion system.


Sign in / Sign up

Export Citation Format

Share Document