scholarly journals Comparison of the bioavailability and intestinal absorption sites of phytoene, phytofluene, lycopene and β-carotene

2019 ◽  
Vol 300 ◽  
pp. 125232 ◽  
Author(s):  
Paula Mapelli-Brahm ◽  
Marielle Margier ◽  
Charles Desmarchelier ◽  
Charlotte Halimi ◽  
Marion Nowicki ◽  
...  
Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 838 ◽  
Author(s):  
Emmanuelle Reboul

A growing literature is dedicated to the understanding of carotenoid beneficial health effects. However, the absorption process of this broad family of molecules is still poorly understood. These highly lipophilic plant metabolites are usually weakly absorbed. It was long believed that β-carotene absorption (the principal provitamin A carotenoid in the human diet), and thus all other carotenoid absorption, was driven by passive diffusion through the brush border of the enterocytes. The identification of transporters able to facilitate carotenoid uptake by the enterocytes has challenged established statements. After a brief overview of carotenoid metabolism in the human upper gastrointestinal tract, a focus will be put on the identified proteins participating in the transport and the metabolism of carotenoids in intestinal cells and the regulation of these processes. Further progress in the understanding of the molecular mechanisms regulating carotenoid intestinal absorption is still required to optimize their bioavailability and, thus, their health effects.


Biochemistry ◽  
2005 ◽  
Vol 44 (11) ◽  
pp. 4517-4525 ◽  
Author(s):  
Ariëtte van Bennekum ◽  
Moritz Werder ◽  
Stephen T. Thuahnai ◽  
Chang-Hoon Han ◽  
Phu Duong ◽  
...  

2015 ◽  
Vol 172 ◽  
pp. 155-160 ◽  
Author(s):  
Aurélie Goncalves ◽  
Stéphanie Roi ◽  
Marion Nowicki ◽  
Amélie Dhaussy ◽  
Alain Huertas ◽  
...  

1958 ◽  
Vol 34 (5) ◽  
pp. 901-909 ◽  
Author(s):  
Ervin Kaplan ◽  
Bernard D. Edidin ◽  
Robert C. Fruin ◽  
Lyle A. Baker

1972 ◽  
Vol 129 (2) ◽  
pp. 345-355 ◽  
Author(s):  
L. V. Avioli

2010 ◽  
Vol 80 (3) ◽  
pp. 159-167 ◽  
Author(s):  
Gabriela Villaça Chaves ◽  
Gisele Gonçalves de Souza ◽  
Andréa Cardoso de Matos ◽  
Dra. Wilza Abrantes Peres ◽  
Silvia Elaine Pereira ◽  
...  

Objective: To evaluate retinol and β-carotene serum levels and their relationship with risk factors for cardiovascular disease in individuals with morbid obesity, resident in Rio de Janeiro. Methodology: Blood serum concentrations of retinol and β-carotene of 189 morbidly obese individuals were assessed. The metabolic syndrome was identified according to the criteria of the National Cholesterol Education Program (NCEP) and World Health Organization (WHO). Lipid profile, insulin resistance, basal insulin, glycemia, blood pressure, and anthropometry and their correlation with retinol and β-carotene serum levels were evaluated. Results: Metabolic syndrome diagnosis was observed in 49.0% of the sample. Within this percentage the levels of β-carotene were significantly lower when body mass index increased. Serum retinol didn't show this behavior. Serum retinol inadequacy in patients with metabolic syndrome (61.3%), according to WHO criterion, was higher (15.8%) than when the whole sample was considered (12.7%). When metabolic syndrome was diagnosed by NCEP criterion, β-carotene inadequacy was higher (42.8%) when compared to the total sample (37.5%). There was a significant difference between average β-carotene values of patients with and without metabolic syndrome (p=0.048) according to the classification of the NCEP. Lower values were found in patients with metabolic syndrome. Conclusion: Considering the vitamin A contribution in antioxidant protection, especially when risk factors for cardiovascular disease are present, it is suggested that great attention be given to morbidly obese. This could aid in prevention and treatment of cardiovascular disease, which affects a significant part of the population.


2014 ◽  
Vol 84 (Supplement 1) ◽  
pp. 25-29 ◽  
Author(s):  
Guangwen Tang

Humans need vitamin A and obtain essential vitamin A by conversion of plant foods rich in provitamin A and/or absorption of preformed vitamin A from foods of animal origin. The determination of the vitamin A value of plant foods rich in provitamin A is important but has challenges. The aim of this paper is to review the progress over last 80 years following the discovery on the conversion of β-carotene to vitamin A and the various techniques including stable isotope technologies that have been developed to determine vitamin A values of plant provitamin A (mainly β-carotene). These include applications from using radioactive β-carotene and vitamin A, depletion-repletion with vitamin A and β-carotene, and measuring postprandial chylomicron fractions after feeding a β-carotene rich diet, to using stable isotopes as tracers to follow the absorption and conversion of plant food provitamin A carotenoids (mainly β-carotene) in humans. These approaches have greatly promoted our understanding of the absorption and conversion of β-carotene to vitamin A. Stable isotope labeled plant foods are useful for determining the overall bioavailability of provitamin A carotenoids from specific foods. Locally obtained plant foods can provide vitamin A and prevent deficiency of vitamin A, a remaining worldwide concern.


Sign in / Sign up

Export Citation Format

Share Document