Sensitive lateral flow immunoassay for the detection of pork additives in raw and cooked meat products

2021 ◽  
Vol 359 ◽  
pp. 129927
Author(s):  
Olga D. Hendrickson ◽  
Elena A. Zvereva ◽  
Boris B. Dzantiev ◽  
Anatoly V. Zherdev
1981 ◽  
Vol 8 (1) ◽  
pp. 31-35 ◽  
Author(s):  
Esam M. Ahmed ◽  
Roger L. West

Abstract Beef chuck and plate cuts obtained from U.S.D.A. utility grade carcass were mixed and ground through a 0.318 cm plate. The ground meat was extended with extruded and non-extruded defatted peanut meal. Hydrated defatted peanut meal was added at the rate of 20 and 30 parts to 80 and 70 parts of the ground meat, respectively. All treatments were formulated to contain 20% fat in the final patty and loaf products. Extruded and non-extruded meat products were stored at −18 C for periods up to 6 weeks. All quality evaluations were conducted on cooked meat products. Ground meat patties and loaves extended with non-extruded peanut meal exhibited similar cooking losses to those either extended with extruded peanut meal or 100% beef products. Control meat products stored for 4 weeks or longer required larger forces to shear than the non-stored patties. Freezing storage of the extended meat products did not result in a change of shearing forces. These forces were similar to the shearing force exhibited by freshly prepared products. Trained sensory panelists indicated that extended meat patties were more tender and less cohesive than non-extended patties. However, sensory acceptability tests indicated similar acceptability ratings for the extended and non-extended meat patties and loaves.


Meat Science ◽  
2017 ◽  
Vol 131 ◽  
pp. 196-202 ◽  
Author(s):  
Josef Kameník ◽  
Alena Saláková ◽  
Věra Vyskočilová ◽  
Alena Pechová ◽  
Danka Haruštiaková

2019 ◽  
Vol 102 (2) ◽  
pp. 557-563 ◽  
Author(s):  
Cortlandt P Thienes ◽  
Jongkit Masiri ◽  
Lora A Benoit ◽  
Brianda Barrios-Lopez ◽  
Santosh A Samuel ◽  
...  

Abstract Background: Concerns about the contamination of meat products with undeclared meats and new regulations for the declaration of meat adulterants have established the need for a rapid test to detect chicken and turkey adulteration. Objective: To address this need, Microbiologique, Inc. has developed an ELISA that can quantify the presence of chicken and turkey down to 0.1% (w/w) in cooked pork, horse, beef, goat, and lamb meats. Results: This chicken/turkey authentication ELISA has an analytical sensitivity of 0.000037% and 0.000048% (w/v) for cooked andautoclaved chicken, respectively, and an analyticalrange of quantitation of 0.025–2% (w/v), in the absence of other meats. The assay cross-reacts with cooked duck and pheasant but does not demonstrate any cross-reactivity with cooked pork, horse, beef, goat, and lamb meats, egg, or common food matrixes. Conclusions: The assay is rapid, can be completed in 70 min, and can detect a 0.1% level of meat adulteration. Highlights: The Microbiologique Cooked Chicken/TurkeyELISA can quantitate cooked chicken/turkey in the presence of pork, horse, chicken, goat, or sheep meat to 0.1% (w/w) and is not affected by common food matrixes.


2015 ◽  
Vol 7 (21) ◽  
pp. 9274-9280 ◽  
Author(s):  
Yun-fu Ouyang ◽  
Hai-bo Li ◽  
Hong-bing Tang ◽  
Yi Jin ◽  
Gui-ying Li

A liquid chromatography-ion trap-time of flight tandem mass spectrometric assay coupled with accelerated solvent extraction was developed to identify and quantify six heterocyclic aromatic amines.


1997 ◽  
Vol 44 (12) ◽  
pp. 855-861 ◽  
Author(s):  
Takashi SAMESHIMA ◽  
Kazuko TAKESHITA ◽  
Masanobu AKIMOTO ◽  
Hiroyuki YAMANAKA ◽  
Tameo MIKI ◽  
...  

1984 ◽  
pp. 87-105 ◽  
Author(s):  
A. M. Pearson ◽  
F. W. Tauber

Antioxidants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 9 ◽  
Author(s):  
Małgorzata Karwowska ◽  
Anna Kononiuk ◽  
Karolina M. Wójciak

Oxidation processes are responsible for reduction of the sensory and nutritional quality of meat and meat products, thus affecting consumer acceptance. The use of sodium nitrite in meat processing is an important factor limiting these changes. Therefore, eliminating this substance from the recipe of meat products to increase their nutritional value is not an easy challenge. The aim of this study was to determine the effect of sodium nitrite reduction on the lipid oxidation (peroxide value, thiobarbituric acid reactive substances), and color parameters (CIE L*a*b*, total heme pigment and heme iron, nitrosylmyoglobin) in cooked meat products during 15 days of vacuum storage. The antioxidant properties of products and isolated peptides (2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS•), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, ferric-reducing antioxidant power) were also evaluated. Experimental material included four different sample groups of cooked meat products produced with various percentages of sodium nitrite (0, 50, 100, and 150 mg kg−1). It was shown that the sodium nitrite dose had no statistically significant effect on lightness (L*) and redness (a*) values, as well as nitrosylmyoglobin content. Along with decreasing the share of sodium nitrite in the samples, the thiobarbituric acid reactive substances (TBARS) value increased from 0.43 mg kg−1 for samples with 150 mg kg−1 at day 0 to 3.14 mg kg−1 for samples without nitrite at day 15. The total ABTS scavenging capacity of the cooked meat samples was in the range 2.48 to 4.31 eqv. mM Trolox per g of product throughout the entire storage period. During storage, the ferric-reducing antioxidant power of samples with nitrite increased from 0.25 to 0.38 eqv. mg/mL ascorbic acid per g of product. In conclusion, reduction of nitrite to the level of 50 mg kg−1 seemed to be comparable with the traditional use of nitrite in meat products in terms of the physicochemical properties and properties related to lipid oxidation, as well as total antioxidant capacity and peptide antioxidant capacity.


Sign in / Sign up

Export Citation Format

Share Document