Quantitative detection of viable foodborne E. coli O157:H7, Listeria monocytogenes and Salmonella in fresh-cut vegetables combining propidium monoazide and real-time PCR

Food Control ◽  
2012 ◽  
Vol 25 (2) ◽  
pp. 704-708 ◽  
Author(s):  
Patricia Elizaquível ◽  
Gloria Sánchez ◽  
Rosa Aznar
2004 ◽  
Vol 70 (3) ◽  
pp. 1366-1377 ◽  
Author(s):  
David Rodr�guez-L�zaro ◽  
Marta Hern�ndez ◽  
Mariela Scortti ◽  
Teresa Esteve ◽  
Jos� A. V�zquez-Boland ◽  
...  

ABSTRACT We developed and assessed real-time PCR (RTi-PCR) assays for the detection and quantification of the food-borne pathogen Listeria monocytogenes and the closely related nonpathogenic species L. innocua. The target genes were hly and iap for L. monocytogenes and lin02483 for L. innocua. The assays were 100% specific, as determined with 100 Listeria strains and 45 non-Listeria strains, and highly sensitive, with detection limits of one target molecule in 11 to 56% of the reactions with purified DNA and 3 CFU in 56 to 89% of the reactions with bacterial suspensions. Quantification was possible over a 5-log dynamic range, with a limit of 15 target molecules and R 2 values of >0.996. There was an excellent correspondence between the predicted and the actual numbers of CFU in the samples (deviations of <23%). The hly-based assay accurately quantified L. monocytogenes in all of the samples tested. The iap-based assay, in contrast, was unsuitable for quantification purposes, underestimating the bacterial counts by 3 to 4 log units in a significant proportion of the samples due to serovar-related target sequence variability. The combination of the two assays enabled us to classify L. monocytogenes isolates into one of the two major phylogenetic divisions of the species, I and II. We also assessed the new AmpliFluor technology for the quantitative detection of L. monocytogenes by RTi-PCR. The performance of this system was similar to that of the TaqMan system, although the former system was slightly less sensitive (detection limit of 15 molecules in 45% of the reactions) and had a higher quantification limit (60 molecules).


2005 ◽  
Vol 71 (4) ◽  
pp. 2190-2194 ◽  
Author(s):  
Morgan Guilbaud ◽  
Pierre de Coppet ◽  
Fabrice Bourion ◽  
Cinta Rachman ◽  
Hervé Prévost ◽  
...  

ABSTRACT A quantitative method based on a real-time PCR assay to enumerate Listeria monocytogenes in biofilms was developed. The specificity for L. monocytogenes of primers targeting the listeriolysin gene was demonstrated using a SYBR Green I real-time PCR assay. The number of L. monocytogenes detected growing in biofilms was 6 × 102 CFU/cm2.


2015 ◽  
pp. 567-674 ◽  
Author(s):  
P. Russo ◽  
G. Botticella ◽  
M.L. Amodio ◽  
G. Colelli ◽  
M. Cavaiuolo ◽  
...  

2012 ◽  
Vol 66 (10) ◽  
pp. 2065-2073 ◽  
Author(s):  
N. Yokomachi ◽  
J. Yaguchi

A photo-inducible DNA-binding dye, propidium monoazide (PMA), was used to distinguish viable and dead Escherichia coli cells. Microscopic observations using a combination of the dyes 4′,6-diamidino-2-phenylindole and PMA indicated that PMA stained only dead cells, with membrane damage, red. Mixtures of viable and heat-treated E. coli cells were subjected to real-time polymerase chain reaction (PCR) with PMA treatment. Viable cell counts were linearly related to real-time PCR threshold cycle values for PMA-treated cells in the mixtures of viable and heat-treated cells, as long as the ratio of dead cells to viable cells was no greater than 10. In the wastewater treatment plants, total, viable and culturable E. coli were enumerated by real-time PCR, real-time PCR coupled with PMA treatment and the most probable number method using EC-MUG medium, respectively. The concentrations of viable E. coli in the wastewater treatment plants were much higher than those of culturable cells. In addition, viable cells were even more chlorine resistant than culturable ones.


2013 ◽  
Vol 12 (1) ◽  
pp. 51-56 ◽  
Author(s):  
Jason Tszhin Lam ◽  
Edwin Lui ◽  
Simon Chau ◽  
Cathie Show Wu Kueh ◽  
Ying-kit Yung ◽  
...  

The current investigation evaluated the use of real-time polymerase chain reaction (PCR) for quantitative detection of Escherichia coli in marine beach water. Densities of E. coli in 263 beach water samples collected from 13 bathing beaches in Hong Kong between November 2008 and December 2009 were determined using both real-time PCR and culture-based methods. Regression analysis showed that these two methods had a significant positive linear relationship with a correlation coefficient (r) of 0.64. Serial dilution of spiked samples indicated that the real-time PCR had a limit of quantification of 25 E. coli colonies in 100 mL water sample. This study showed that the rapid real-time PCR has potential to complement the traditional culture method of assessing fecal pollution in marine beach water.


Sign in / Sign up

Export Citation Format

Share Document