Enumeration of viable Escherichia coli by real-time PCR with propidium monoazide

2012 ◽  
Vol 66 (10) ◽  
pp. 2065-2073 ◽  
Author(s):  
N. Yokomachi ◽  
J. Yaguchi

A photo-inducible DNA-binding dye, propidium monoazide (PMA), was used to distinguish viable and dead Escherichia coli cells. Microscopic observations using a combination of the dyes 4′,6-diamidino-2-phenylindole and PMA indicated that PMA stained only dead cells, with membrane damage, red. Mixtures of viable and heat-treated E. coli cells were subjected to real-time polymerase chain reaction (PCR) with PMA treatment. Viable cell counts were linearly related to real-time PCR threshold cycle values for PMA-treated cells in the mixtures of viable and heat-treated cells, as long as the ratio of dead cells to viable cells was no greater than 10. In the wastewater treatment plants, total, viable and culturable E. coli were enumerated by real-time PCR, real-time PCR coupled with PMA treatment and the most probable number method using EC-MUG medium, respectively. The concentrations of viable E. coli in the wastewater treatment plants were much higher than those of culturable cells. In addition, viable cells were even more chlorine resistant than culturable ones.

2012 ◽  
Vol 78 (15) ◽  
pp. 5297-5304 ◽  
Author(s):  
Baoguang Li ◽  
Jin-Qiang Chen

ABSTRACTThe goal of this study was to develop a sensitive, specific, and accurate method for the selective detection of viableEscherichia coliO157:H7 cells in foods. A unique open reading frame (ORF), Z3276, was identified as a specific genetic marker for the detection ofE. coliO157:H7. We developed a real-time PCR assay with primers and probe targeting ORF Z3276 and confirmed that this assay was sensitive and specific forE. coliO157:H7 strains (n= 298). Using this assay, we can detect amounts of genomic DNA ofE. coliO157:H7 as low as a few CFU equivalents. Moreover, we have developed a new propidium monoazide (PMA)–real-time PCR protocol that allows for the clear differentiation of viable from dead cells. In addition, the protocol was adapted to a 96-well plate format for easy and consistent handling of a large number of samples. Amplification of DNA from PMA-treated dead cells was almost completely inhibited, in contrast to the virtually unaffected amplification of DNA from PMA-treated viable cells. With beef spiked simultaneously with 8 × 107dead cells/g and 80 CFU viable cells/g, we were able to selectively detect viableE. coliO157:H7 cells with an 8-h enrichment. In conclusion, this PMA–real-time PCR assay offers a sensitive and specific means to selectively detect viableE. coliO157:H7 cells in spiked beef. It also has the potential for high-throughput selective detection of viableE. coliO157:H7 cells in other food matrices and, thus, will have an impact on the accurate microbiological and epidemiological monitoring of food safety and environmental sources.


2016 ◽  
Vol 74 (5) ◽  
pp. 1243-1254 ◽  
Author(s):  
Wataru Ruike ◽  
Atsushi Higashimori ◽  
Junichi Yaguchi ◽  
Yu-you Li

A combination of propidium monoazide (PMA) with real-time quantitative polymerase chain reaction (PMA-qPCR) was optimized to enumerate only viable Escherichia coli in anaerobic digestion processes. Repeating the PMA treatment twice and a final concentration of 100 μM resulted in an effective exclusion of DNA from heat-treated E. coli cells. In three anaerobic digestion processes, real-time PCR, PMA-qPCR, and the most probable number method (MPN) were used to estimate the numbers of total, viable, and culturable E. coli cells, respectively. Culturable concentrations of fecal coliforms were also measured by the membrane filter method. For thermophilic digestion, the reductions in total and viable E. coli cells from the digester influent to the effluent were significantly lower than those in culturable cells and fecal coliforms by two to four orders of magnitude. For mesophilic digestion, the differences in the reductions in E. coli and fecal coliforms counts were less than two orders of magnitude. Based on the measurements of viable E. coli determined by the PMA-qPCR method, the microbial quality of digester effluents was discussed for agricultural application, and pasteurization after anaerobic digestion was suggested for the destruction of viable pathogens.


2012 ◽  
Vol 65 (4) ◽  
pp. 589-595 ◽  
Author(s):  
A. Ouali ◽  
H. Jupsin ◽  
J. L. Vasel ◽  
L. Marouani ◽  
A. Ghrabi

Korba wastewater treatment plant is a conventional activated sludge followed by three maturation ponds (MP1, MP2, MP3) in series acting as a tertiary treatment. The first study of wastewater treatment plants showed that the effluent concentration of Escherichia coli and enterococci at the outlet of the (MP3) varies between 103 and 104CFU/100 ml. After the hydrodynamic study conducted by Rhodamine WT which showed short-circuiting in the MP1, two baffles were introduced in the first maturation pond (MP1) to improve the hydrodynamic and the sanitary performances. The second hydraulic study showed that the dispersion number ‘d’ was reduced from 1.45 to 0.43 by this engineering intervention and the Peclet number was raised from 0.69 to 2.32. The hydraulic retention time was increased by 14 h. Because of well-designed baffles, the removal efficiency of E. coli and enterococci was raised between 0.2 and 0.7 log units for the first maturation pond.


2005 ◽  
Vol 68 (8) ◽  
pp. 1593-1599 ◽  
Author(s):  
MICHAEL A. GRANT

A new procedure for enrichment of Escherichia coli O157:H7 and other Shiga toxin–producing E. coli was compared to five standard methods: the British Public Health Laboratory Service, International Standard Method, U.S. Department of Agriculture, Canadian Health Products and Food Branch, and U.S. Food and Drug Administration. The new procedure was comparable to the standard methods in its ability to detect target cells inoculated into foods at approximately 1 CFU g−1. Comparisons were also made of the ability of the six enrichment procedures to detect E. coli O157:H7 against a large background of competitor microorganisms. In these experiments the new procedure yielded more target cells than the other five enrichments by two to three orders of magnitude as determined by enumeration on sorbitol MacConkey agar with tellurite and cefixime and Rainbow agar with tellurite and novobiocin and by verification of presumptive colonies by real-time PCR. For example, the population of enterohemorrhagic E. coli strain 6341 recovered on sorbitol MacConkey agar with tellurite and cefixime after enrichment with the experimental method was 2.42 × 108 CFU ml−1 and 1.80 × 106 CFU ml−1 after enrichment with the Canadian Health Products and Food Branch method, the second most effective in this experiment. In addition, broth cultures resulting from each of the six enrichment procedures were used to prepare templates for real-time PCR detection of stx1/stx2. Resulting threshold cycle (Ct) values after the experimental enrichment were similar to positive control values, whereas the five standard methods produced delayed Ct values or were not detected.


2006 ◽  
Vol 52 (5) ◽  
pp. 482-488 ◽  
Author(s):  
Rebekka R.E Artz ◽  
Lisa M Avery ◽  
Davey L Jones ◽  
Ken Killham

The detection sensitivity and potential interference factors of a commonly used assay based on real-time polymerase chain reaction (PCR) for Escherichia coli O157:H7 using eae gene-specific primers were assessed. Animal wastes and soil samples were spiked with known replicate quantities of a nontoxigenic strain of E. coli O157:H7 in a viable or dead state and as unprotected DNA. The detection sensitivity and accuracy of real-time PCR for E. coli O157:H7 in animal wastes and soil is low compared to enrichment culturing. Nonviable cells and unprotected DNA were shown to produce positive results in several of the environmental samples tested, leading to potential overestimates of cell numbers due to prolonged detection of nonviable cells. This demonstrates the necessity for the specific calibration of real-time PCR assays in environmental samples. The accuracy of the eae gene–based detection method was further evaluated over time in a soil system against an activity measurement, using the bioluminescent properties of an E. coli O157:H7 Tn5luxCDABE construct. The detection of significant numbers of viable but nonculturable (VBNC) as well as nonviable and possibly physically protected cells as shown over a period of 90 days further complicates the use of real-time PCR assays for quick diagnostics in environmental samples and infers that enrichment culturing is still required for the final verification of samples found positive by real-time PCR methods.Key words: Escherichia coli O157:H7, real-time PCR, animal waste, soil, VBNC.


2020 ◽  
Vol 103 (1) ◽  
pp. 161-175
Author(s):  
Dane Brooks ◽  
Benjamin Bastin ◽  
Erin Crowley ◽  
James Agin ◽  
Mike Clark ◽  
...  

Abstract Background: The iQ-Check Real-Time PCR kits use PCR technology based on gene amplification and detection by a real-time PCR thermalcycler for the detection of target analytes in select food matrices. The iQ-Check E. coli O157:H7 [Performance Tested MethodSM (PTM) 020801] and STEC VirX and STEC SerO (combined PTM 121203) methods were previously validated for different matrices under different enrichment schemes. Objective: To modify the current iQ-Check E. coli O157:H7 Kit for the detection of Escherichia coli O157:H7 from 25 to 375 g for raw ground beef (17% fat), raw beef trim, and fresh spinach. In addition, a matrix extension was validated for iQ-Check E. coli O157:H7 for raw chicken breast without skin (25 g), raw chicken thigh with skin (25 g), mechanically separated chicken (25 g), and raw ground pork (25 g). The study also included the modification of the iQ-Check STEC VirX and SerO Kits for the detection of non-O157 Shiga toxin–producing E. coli (STEC) for raw ground beef (375 g), raw beef trim (375 g), and fresh spinach (375 g) from STEC Enrichment Broth to buffered peptone water (BPW). All tests were carried out at 8–22 h (10–22 h for fresh spinach). Methods: Ground beef, beef trim, and spinach were co-inoculated with E. coli O157:H7, non-O157 STECs, and Salmonella spp. and analyzed for E. coli O157:H7 and non-O157 STECs after an 8-22 h enrichment in BPW for the beef matrices and after a 10–22 h enrichment in BPW for spinach. The chicken matrices were inoculated with E. coli O157:H7 only and analyzed after an 8–22 h enrichment in BPW. The iQ-Check Free DNA Removal Solution workflow was utilized for all matrices. Confirmations at the 22 h time point and method comparisons were conducted with the appropriate reference method as outlined in the U.S. Food and Drug Administration Bacteriological Analytical Manual Chapter 4A or the U.S. Department of Agriculture Food Safety and Inspection Service Microbiology Laboratory Guidebook Chapters 5.09 and 5B.05. For the iQ-Check STEC VirX and STEC SerO Kits, inclusivity and exclusivity were also performed. Results: The two inclusivity and exclusivity evaluations indicated that the test methods can accurately detect the target analytes and correctly excluded nontarget organisms after 8 h of enrichment. In the method comparison study, the iQ-Check E. coli O157:H7 and STEC VirX and STEC SerO test kits demonstrated no statistically significant differences between candidate and reference method results or between presumptive and confirmed results for all food matrices analyzed and the two time points (8 or 10 and 22 h). Both time points produced the same results, with no discrepancies. Conclusions: The iQ-Check real-time PCR kits are effective methods for the detection of E. coli O157 and non-O157 STECs (both the virulence factors and the O groups) from raw ground beef, raw beef trim, and fresh spinach in 375 g samples enriched in BPW for 8–22 h (10–22 h for fresh spinach). In addition, the iQ-Check E. coli O157 Kit is effective in detecting E. coli O157 in 25 g samples of raw chicken breast without skin, raw chicken thigh with skin, mechanically separated chicken, and raw ground pork. The iQ-Check test kits allow the end user to pair enrichments for multiple target analytes, allowing the user to prepare a single enrichment and perform a single DNA extraction. The Free DNA Removal Solution removes free DNA from samples prior to PCR analysis, protecting DNA from intact and living cells. Highlights: The method modifications were granted based on the data collected.


2020 ◽  
Vol 86 (8) ◽  
Author(s):  
Mykhailo Savin ◽  
Gabriele Bierbaum ◽  
Jens Andre Hammerl ◽  
Céline Heinemann ◽  
Marijo Parcina ◽  
...  

ABSTRACT The wastewater of livestock slaughterhouses is considered a source of antimicrobial-resistant bacteria with clinical relevance and may thus be important for their dissemination into the environment. To get an overview of their occurrence and characteristics, we investigated process water (n = 50) from delivery and unclean areas as well as wastewater (n = 32) from the in-house wastewater treatment plants (WWTPs) of two German poultry slaughterhouses (slaughterhouses S1 and S2). The samples were screened for ESKAPE bacteria (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.) and Escherichia coli. Their antimicrobial resistance phenotypes and the presence of extended-spectrum-β-lactamase (ESBL), carbapenemase, and mobilizable colistin resistance genes were determined. Selected ESKAPE bacteria were epidemiologically classified using different molecular typing techniques. At least one of the target species was detected in 87.5% (n = 28/32) of the wastewater samples and 86.0% (n = 43/50) of the process water samples. The vast majority of the recovered isolates (94.9%, n = 448/472) was represented by E. coli (39.4%), the A. calcoaceticus-A. baumannii (ACB) complex (32.4%), S. aureus (12.3%), and K. pneumoniae (10.8%), which were widely distributed in the delivery and unclean areas of the individual slaughterhouses, including their wastewater effluents. Enterobacter spp., Enterococcus spp., and P. aeruginosa were less abundant and made up 5.1% of the isolates. Phenotypic and genotypic analyses revealed that the recovered isolates exhibited diverse resistance phenotypes and β-lactamase genes. In conclusion, wastewater effluents from the investigated poultry slaughterhouses exhibited clinically relevant bacteria (E. coli, methicillin-resistant S. aureus, K. pneumoniae, and species of the ACB and Enterobacter cloacae complexes) that contribute to the dissemination of clinically relevant resistances (i.e., blaCTX-M or blaSHV and mcr-1) in the environment. IMPORTANCE Bacteria from livestock may be opportunistic pathogens and carriers of clinically relevant resistance genes, as many antimicrobials are used in both veterinary and human medicine. They may be released into the environment from wastewater treatment plants (WWTPs), which are influenced by wastewater from slaughterhouses, thereby endangering public health. Moreover, process water that accumulates during the slaughtering of poultry is an important reservoir for livestock-associated multidrug-resistant bacteria and may serve as a vector of transmission to occupationally exposed slaughterhouse employees. Mitigation solutions aimed at the reduction of the bacterial discharge into the production water circuit as well as interventions against their further transmission and dissemination need to be elaborated. Furthermore, the efficacy of in-house WWTPs needs to be questioned. Reliable data on the occurrence and diversity of clinically relevant bacteria within the slaughtering production chain and in the WWTP effluents in Germany will help to assess their impact on public and environmental health.


2006 ◽  
Vol 69 (2) ◽  
pp. 412-416 ◽  
Author(s):  
MICHAEL A. GRANT ◽  
JINXIN HU ◽  
KAREN C. JINNEMAN

A multiplex real-time PCR method was developed for detection of heat-labile and heat-stable toxin genes in enterotoxigenic Escherichia coli. Approximately 10 CFU per reaction mixture could be detected in rinsates from produce samples. Several foods representative of varieties previously shown to have caused enterotoxigenic E. coli outbreaks were spiked and enriched for 4 or 6 h. Both heat-labile and heat-stable toxin genes could be detected in the foods tested, with the exception of hot sauce, with threshold cycle values ranging from 25.2 to 41.1. A procedure using membrane filtration which would allow enumeration of the enterotoxigenic E. coli population in a food sample in less than 28 h by real-time PCR analysis of colonies picked from media highly selective for E. coli was also developed.


2020 ◽  
Vol 9 (2) ◽  
pp. 448
Author(s):  
Ema Komalasari ◽  
Winiati P. Rahayu ◽  
Siti Nurjanah

Pathogenic Escherichia coli (E. coli) has been implicated in a wide range of disease causing infections. It is essential to generate a method for detecting and differentiating each pathotype of E. coli which is more quickly and efficiently by using less reagent. This study aimed to evaluate a SYBR Green multiplex real-time PCR method for detecting four types of pathogenic E. coli. Two of multiplex real-time PCR system, 6-plex and 3-plex, were set to detect six different virulence factors from ETEC, EPEC, EHEC, and EIEC and evaluate the melting curves and specificity compared to simplex method. The results showed that 3-plex rt-PCR method gave more reliable melting curves than 6-plex. The 3-plex rt-PCR also provided similar melting value (Tm) to simplex system. The results of this specificity assay supported the selection of 3-plex rt-PCR conditions for detection of pathogenic E. coli.


Sign in / Sign up

Export Citation Format

Share Document