Efficacy of aerosolized hydrogen peroxide-based sanitizer on the reduction of pathogenic bacteria on a stainless steel surface

Food Control ◽  
2012 ◽  
Vol 27 (1) ◽  
pp. 57-63 ◽  
Author(s):  
Na-Young Choi ◽  
Seung-Youb Baek ◽  
Jae-Hyun Yoon ◽  
Mi-Ran Choi ◽  
Dong-Hyun Kang ◽  
...  
2017 ◽  
Vol 81 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Nitin Dhowlaghar ◽  
Piumi De Abrew Abeysundara ◽  
Ramakrishna Nannapaneni ◽  
Mark W. Schilling ◽  
Sam Chang ◽  
...  

ABSTRACTThe objective of this study was to determine the effect of strain and temperature on growth and biofilm formation by Listeria monocytogenes in high and low concentrations of catfish mucus extract on various food contact surfaces at 10 and 22°C. The second objective of this study was to evaluate the efficacy of disinfectants at recommended concentrations and contact times for removing L. monocytogenes biofilm cells from a stainless steel surface covered with catfish mucus extract. Growth and biofilm formation of all L. monocytogenes strains increased with higher concentrations of catfish mucus extract at both 10 and 22°C. When 15 μg/mL catfish mucus extract was added to 3 log CFU/mL L. monocytogenes, the biofilm levels of L. monocytogenes on stainless steel reached 4 to 5 log CFU per coupon at 10°C and 5 to 6 log CFU per coupon at 22°C in 7 days. With 375 μg/mL catfish mucus extract, the biofilm levels of L. monocytogenes on stainless steel reached 5 to 6 log CFU per coupon at 10°C and 6 to 7.5 log CFU per coupon at 22°C in 7 days. No differences (P > 0.05) were observed between L. monocytogenes strains tested for biofilm formation in catfish mucus extract on the stainless steel surface. The biofilm formation by L. monocytogenes catfish isolate HCC23 was lower on Buna-N rubber than on stainless steel, polyethylene, and polyurethane surfaces in the presence of catfish mucus extract (P < 0.05). Contact angle analysis and atomic force microscopy confirmed that Buna-N rubber was highly hydrophobic, with lower surface energy and less roughness than the other three surfaces. The complete reduction of L. monocytogenes biofilm cells was achieved on the stainless steel coupons with a mixture of disinfectants, such as quaternary ammonium compounds with hydrogen peroxide or peracetic acid with hydrogen peroxide and octanoic acid at 25 or 50% of the recommended concentration, in 1 or 3 min compared with use of the quaternary ammonium compounds, chlorine, or acid disinfectants alone, which were ineffective for removing all the L. monocytogenes biofilm cells.


2017 ◽  
Vol 80 (11) ◽  
pp. 1897-1902
Author(s):  
A. Inuwa ◽  
A. Lunt ◽  
C. Czuprynski ◽  
G. Miller ◽  
S. A. Rankin

ABSTRACT Although frozen dairy desserts have a strong record of safety, recent outbreaks of foodborne disease linked to ice creams have brought new attention to this industry. There is concern that small-scale frozen dessert equipment may not comply with or be reviewed against published comprehensive design and construction sanitation specifications (National Sanitation Foundation or 3-A sanitary standards). Equipment sanitary design issues may result in reduced efficacy of cleaning and sanitation, thus increasing the likelihood of postprocess contamination with pathogenic bacteria. In this context, and given that Listeria monocytogenes outbreaks are of great concern for the frozen dessert industry, a complementary study was conducted to evaluate the fate of L. monocytogenes in ice cream mix on a stainless steel surface. Our results showed that L. monocytogenes survived for up to 6 weeks at room temperature and 9 weeks at 4°C in contaminated ice cream on a stainless steel surface. Furthermore, chlorine- and acid-based surface sanitizers had no detrimental effect on the L. monocytogenes when used at a concentration and contact time (1 min) recommended by the manufacturer; significant reduction in CFU required 5 to 20 min of contact time.


2020 ◽  
Vol 327 ◽  
pp. 02002
Author(s):  
Jianchun Weng ◽  
Rongchuan Lin ◽  
Xing Rong

Stainless steel will become the substrate material of the flexible display, requirements of the flexible substrate in the surface quality and performance are very strict. Chemical mechanical polishing (CMP) is one of the most appropriate technologies to achieve the surface processing of ultra-thin stainless-steel flexible display substrate with ultra-smooth and damage-free. In this paper, the design of CMP slurry of 304 stainless steel on the hydrogen peroxide-oxalic acid type was proposed. Through experiment and analysis, the basic ingredients of CMP slurry was obtained. The research results showed that the hydrogen peroxide can increase the hydrophilicity of the stainless steel surface, and the Fenton type Haber-Weiss reaction can occur on the surface of the fresh metal substrate of stainless steel. The trivalent iron ions generated by the Fenton type reaction combined with oxygen to generate iron oxide and promoted the removal of the surface material. Under acidic conditions, the oxalic acid can decrease the stability of the oxide film on the stainless steel surface, promote the diffusion of oxygen into the metal interface, improve the oxygen reduction reaction, and increase the material removal rate. The results will provide an important reference for the next researching the CMP slurry of 304 stainless steel.


2018 ◽  
Vol 154 ◽  
pp. 01114 ◽  
Author(s):  
Aria Riswanda ◽  
Indro Pranoto ◽  
Deendarlianto ◽  
Indarto ◽  
Teguh Wibowo

Multiple droplets are drops of water that continuously dropped onto a surface. Spray cooling is an application of the use of droplet on a cooling system. Spray cooling is usually used in a cooling system of electronic devices, and material quenching. In this study, correlations between Weber number and surface temperature decrease rate during multiple droplets impingement are investigated and analyzed. Visualization process is used to help determine the evaporation time of droplets impingement by using high speed camera. Induction stove is used to maintain a stainless steel surface temperature at 120°C, 140°C, and 160°C. The Weber number was varied at 15, and 52.5 to simulate low and medium Weber number. The result of this study shows that increase in Weber number does not increase the temperature decrease rate noticeably. Whereas the Weber number decrease the time required for surface temperature to reach its lowest surface temperature. It was also found that for low and medium Weber number, Weber number affect the evaporation time of multiple droplets after impingement.


1998 ◽  
Vol 97 (3) ◽  
pp. 191-199 ◽  
Author(s):  
Paul R. Rennie ◽  
X.D. Chen ◽  
Antony R. Mackereth

Sign in / Sign up

Export Citation Format

Share Document