Rheological and physical characterization of film-forming solutions and edible films from tapioca starch/decolorized hsian-tsao leaf gum

2009 ◽  
Vol 23 (8) ◽  
pp. 2132-2140 ◽  
Author(s):  
Chien-Hsien Chen ◽  
Wen-Shiuh Kuo ◽  
Lih-Shiuh Lai
Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 493 ◽  
Author(s):  
Joana Odila Pereira ◽  
José Soares ◽  
Eduardo Costa ◽  
Sara Silva ◽  
Ana Gomes ◽  
...  

Recently, edible films were shown to be an effective strategy for the delivery of functional ingredients, such as probiotics and prebiotics. With that in mind, two soluble fibres (inulin and fructooligosaccharides) were selected as prebiotic elements, in whey protein isolate (WPI) and alginate (ALG) matrices plasticized with glycerol and used for the incorporation of Bifidobacterium animalis subsp. lactis BB-12. The results obtained showed that the viability of the B. animalis subsp. lactis BB-12 probiotic strain was maintained within the minimum threshold (106 CFU/g) necessary to act as a probiotic throughout 60 days of storage at 23 °C. The incorporation of prebiotic compounds improved B. animalis subsp. lactis BB-12 viability, with inulin showing the best performance, as it maintained the viability at 7.34 log CFU/g. The compositional characteristics (biopolymer type and prebiotics addition) of the film forming solutions had no significant impact upon the viability of the probiotic strain. The incorporation of probiotics and prebiotics did not modify the infrared spectra, revealing that the molecular structure of the films was not modified. The moisture content and water solubility decreased positively in WPI- and ALG-based films with the addition of prebiotics compounds. Overall, the results obtained in this work support the use of WPI films containing inulin as a good strategy to immobilize B. animalis subsp. lactis BB-12, with potential applications in the development of functional foods.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seyed Mohammad Davachi ◽  
Neethu Pottackal ◽  
Hooman Torabi ◽  
Alireza Abbaspourrad

AbstractThere is growing interest among the public and scientific community toward the use of probiotics to potentially restore the composition of the gut microbiome. With the aim of preparing eco-friendly probiotic edible films, we explored the addition of probiotics to the seed mucilage films of quince, flax, and basil. These mucilages are natural and compatible blends of different polysaccharides that have demonstrated medical benefits. All three seed mucilage films exhibited high moisture retention regardless of the presence of probiotics, which is needed to help preserve the moisture/freshness of food. Films from flax and quince mucilage were found to be more thermally stable and mechanically robust with higher elastic moduli and elongation at break than basil mucilage films. These films effectively protected fruits against UV light, maintaining the probiotics viability and inactivation rate during storage. Coated fruits and vegetables retained their freshness longer than uncoated produce, while quince-based probiotic films showed the best mechanical, physical, morphological and bacterial viability. This is the first report of the development, characterization and production of 100% natural mucilage-based probiotic edible coatings with enhanced barrier properties for food preservation applications containing probiotics.


2021 ◽  
Vol 19 (1) ◽  
pp. 493-500
Author(s):  
Buliyaminu Adegbemiro Alimi ◽  
Tilahun Seyoum Workneh ◽  
Fortune Abidemi Femi

Sign in / Sign up

Export Citation Format

Share Document