scholarly journals Assessing the pressure resistance of Escherichia coli O157:H7, Listeria monocytogenes and Salmonella enterica to high pressure processing (HPP) in citric acid model solutions for process validation

2021 ◽  
pp. 110091
Author(s):  
Mario González-Angulo ◽  
Vinicio Serment-Moreno ◽  
Laura Clemente-García ◽  
Carole Tonello ◽  
Isabel Jaime ◽  
...  
2019 ◽  
Vol 122 (1) ◽  
pp. 170-180 ◽  
Author(s):  
Rodrigo Petrus ◽  
John Churey ◽  
Randy Worobo

Purpose High pressure processing (HPP) has been widely used for high-acid (pH<4.6) juices. The purpose of this study was to investigate optimal parameters aimed at achieving 5-log reduction of the pathogens of reference in Concord grape juice (pH 3.39). Design/methodology/approach Grape juice was inoculated with five strain cocktails of Escherichia coli O157:H7, Salmonella enterica and Listeria monocytogenes. In total, 11 trials were carried out based on a Central Composite Rotational Design (CCRD). The pressure (P), ranging from 319 to 531 MPa, and dwell time (t), from 35 to 205 s, were tested. The performance of the combinations (P × t) was evaluated by pathogen challenge microbiological assays. Findings E. coli O157:H7 was more resistant to HPP than S. enterica. L. monocytogenes did not grow in unprocessed juice (before HPP). Findings demonstrated that moderate pressures (~400 MPa) and short dwell times (~2 min) were effective in achieving a greater than 5-log reduction in the pathogens of reference. Practical implications Because the maintenance costs of equipment exponentially increase with pressure beyond 600 MPa, significant reductions in process pressure are highly desirable. Originality/value The results of this study can supplement the dearth of information on the applicability of high pressure as a Concord grape juice processing technology in terms of the pathogens inactivation. Furthermore, the use of a cocktail of five strains of pathogens inoculated in Concord grape juice to challenge different HPP parameters has not been reported.


2018 ◽  
Vol 19 (0) ◽  
Author(s):  
Priscila Alves Dias ◽  
Daiani Teixeira Silva ◽  
Cláudio Dias Timm

Resumo Kefir é o produto da fermentação do leite pelos grãos de kefir. Esses grãos contêm uma mistura simbiótica de bactérias e leveduras imersas em uma matriz composta de polissacarídeos e proteínas. Muitos benefícios à saúde humana têm sido atribuídos ao kefir, incluindo atividade antimicrobiana contra bactérias Gram positivas e Gram negativas. A atividade antimicrobiana de 60 microrganismos isolados de grãos de kefir, frente à Escherichia coli O157:H7, Salmonella enterica subsp. enterica sorotipos Typhimurium e Enteritidis, Staphylococcus aureus e Listeria monocytogenes, foi estudada através do teste do antagonismo. A ação antimicrobiana dos sobrenadantes das bactérias ácido-lácticas que apresentaram atividade no teste do antagonismo foi testada. O experimento foi repetido usando sobrenadantes com pH neutralizado. Salmonella Typhimurium e Enteritidis sobreviveram por 24 horas no kefir em fermentação. E. coli O157:H7, S. aureus e L. monocytogenes foram recuperados até 72 horas após o início da fermentação. Todos os isolados apresentaram atividade antimicrobiana contra pelo menos um dos patógenos usados no teste do antagonismo. Sobrenadantes de 25 isolados apresentaram atividade inibitória e três mantiveram essa atividade com pH neutralizado. As bactérias patogênicas estudadas sobreviveram por tempo superior àquele normalmente utilizado para a fermentação do kefir artesanal, o que caracteriza perigo em potencial para o consumidor quando a matéria-prima não apresentar segurança sanitária. Lactobacillus isolados de grãos de kefir apresentam atividade antimicrobiana contra cepas de E. coli O157:H7, Salmonella sorotipos Typhimurium e Enteritidis, S. aureus e L. monocytogenes além daquela exercida pela diminuição do pH.


2017 ◽  
Vol 84 (2) ◽  
Author(s):  
Sandeep Tamber

ABSTRACTHigh-pressure processing is a nonthermal method of food preservation that uses pressure to inactivate microorganisms. To ensure the effective validation of process parameters, it is important that the design of challenge protocols consider the potential for resistance in a particular species. Herein, the responses of 99 diverseSalmonella entericastrains to high pressure are reported. Members of this population belonged to 24 serovars and were isolated from various Canadian sources over a period of 26 years. When cells were exposed to 600 MPa for 3 min, the average reduction in cell numbers for this population was 5.6 log10CFU/ml, with a range of 0.9 log10CFU/ml to 6 log10CFU/ml. Eleven strains, from 5 serovars, with variable levels of pressure resistance were selected for further study. The membrane characteristics (propidium iodide uptake during and after pressure treatment, sensitivity to membrane-active agents, and membrane fatty acid composition) and responses to stressors (heat, nutrient deprivation, desiccation, and acid) for this panel suggested potential roles for the cell membrane and the RpoS regulon in mediating pressure resistance inS. enterica. The data indicate heterogeneous and multifactorial responses to high pressure that cannot be predicted for individualS. entericastrains.IMPORTANCEThe responses of foodborne pathogens to increasingly popular minimal food decontamination methods are not understood and therefore are difficult to predict. This report shows that the responses ofSalmonella entericastrains to high-pressure processing are diverse. The magnitude of inactivation does not depend on how closely related the strains are or where they were isolated. Moreover, strains that are resistant to high pressure do not behave similarly to other stresses, suggesting that more than one mechanism might be responsible for resistance to high pressure and the mechanisms used may vary from one strain to another.


2002 ◽  
Vol 65 (8) ◽  
pp. 1215-1220 ◽  
Author(s):  
CHIA-MIN LIN ◽  
SARAH S. MOON ◽  
MICHAEL P. DOYLE ◽  
KAY H. McWATTERS

Iceberg lettuce is a major component in vegetable salad and has been associated with many outbreaks of foodborne illnesses. In this study, several combinations of lactic acid and hydrogen peroxide were tested to obtain effective antibacterial activity without adverse effects on sensory characteristics. A five-strain mixture of Escherichia coli O157:H7, Salmonella enterica serotype Enteritidis, and Listeria monocytogenes was inoculated separately onto fresh-cut lettuce leaves, which were later treated with 1.5% lactic acid plus 1.5% hydrogen peroxide (H2O2) at 40°C for 15 min, 1.5% lactic acid plus 2% H2O2 at 22°C for 5 min, and 2% H2O2 at 50°C for 60 or 90 s. Control lettuce leaves were treated with deionized water under the same conditions. A 4-log reduction was obtained for lettuce treated with the combinations of lactic acid and H2O2 for E. coli O157:H7 and Salmonella Enteritidis, and a 3-log reduction was obtained for L. monocytogenes. However, the sensory characteristics of lettuce were compromised by these treatments. The treatment of lettuce leaves with 2% H2O2 at 50°C was effective not only in reducing pathogenic bacteria but also in maintaining good sensory quality for up to 15 days. A ≤4-log reduction of E. coli O157:H7 and Salmonella Enteritidis was achieved with the 2% H2O2 treatment, whereas a 3-log reduction of L. monocytogenes was obtained. There was no significant difference (P &gt; 0.05) between pathogen population reductions obtained with 2% H2O2 with 60- and 90-s exposure times. Hydrogen peroxide residue was undetectable (the minimum level of sensitivity was 2 ppm) on lettuce surfaces after the treated lettuce was rinsed with cold water and centrifuged with a salad spinner. Hence, the treatment of lettuce with 2% H2O2 at 50°C for 60 s is effective in initially reducing substantial populations of foodborne pathogens and maintaining high product quality.


Sign in / Sign up

Export Citation Format

Share Document