Correlation and analysis of smokeless powder, smokeless powder residues, and lab generated pyrolysis products via GC–MS

2021 ◽  
Vol 23 ◽  
pp. 100316
Author(s):  
Emily Lennert ◽  
Candice Bridge
Author(s):  
H. M. Sagara ◽  
S. A. Schliebe ◽  
M. C. Kong

Particle analysis by scanning electron microscopy with energy-dispersive x- ray analysis is one of the current methods used in crime laboratories to aid law enforcement in identifying individuals who have recently fired or handled a firearm. During the discharge of a firearm, the high pressure caused by the detonation of the cartridge materials forces a portion of the generated gases through leaks in the firing mechanism of the weapon. These gases contain residues of smokeless powder, primer mixture, and contributions from the projectile itself. The condensation of these hot gases form discrete, micrometer-sized particles, which can be collected, along with dry skin cells, salts, and other hand debris, from the hands of a shooter by a simple adhesive lift technique. The examination of the carbon-coated adhesive lifts consist of time consuming systematic searches for high contrast particles of spherical morphology with the characteristic elemental composition of antimony, barium and lead. A detailed list of the elemental compositions which match the criteria for gunshot residue are discussed in the Aerospace report.


Author(s):  
S. M. FROLOV ◽  
◽  
V. I. ZVEGINTSEV ◽  
I. O. SHAMSHIN ◽  
M. V. KAZACHENKO ◽  
...  

A new experimental method for evaluating the detonability of fuel-air mixtures (FAMs) based on measuring the deflagration-to-detonation (DDT) run-up distance and/or time in a standard pulse detonation tube is used to rank gaseous premixed and nonpremixed FAMs by their detonability under substantially identical thermodynamic and gasdynamic conditions. In the experiments, FAMs based on hydrogen, acetylene, ethylene, propylene, propane-butane, n-pentane, and natural gas of various compositions, as well as FAMs based on the gaseous pyrolysis products of polyethylene (PE) and polypropylene (PP) are used: from extremely fuel-lean to extremely fuel-rich at normal temperatures and pressures.


2010 ◽  
Vol 38 (1) ◽  
pp. 72-76
Author(s):  
Wen-Biao WU ◽  
Ke-Qiang QIU ◽  
Cheng-Long LI ◽  
Xiao-Qun XU

1982 ◽  
Vol 47 (7) ◽  
pp. 1838-1847 ◽  
Author(s):  
Martin Bajus ◽  
Jozef Baxa

Pyrolysis of tetraline, decaline, 1,1'-bicyclohexane, cyclohexylbenzene and gas oil was studied in stainless steel and quartz flow tubular reactors at 780 and 800 °C, residence time 0.08 to 0.5 s and at the mass ratio of steam to the raw material changing from 0.5 to 1.5. The effect of reaction temperature, the mass ratio of steam to the raw material, reactor material and of the added elemental sulphur on the yields of individual reaction products is reported. Of bicyclic hydrocarbons, condensed hydrocarbons are more stable than those with noncondensed rings, cyclanoaromates being more stable than bicyclanes. Pyrolysis of gas oil in the stainless steel reactor yields greater amounts of ethylene, propylene, butadiene and smaller amounts of methane and ethane, compared to the pyrolysis carried out under identical conditions in the quartz reactor. Elemental sulphur increases the conversion of gas oil into gaseous pyrolysis products.


2020 ◽  
Vol 849 ◽  
pp. 47-52
Author(s):  
Siti Jamilatun ◽  
Aster Rahayu ◽  
Yano Surya Pradana ◽  
Budhijanto ◽  
Rochmadi ◽  
...  

Nowadays, energy consumption has increased as a population increases with socio-economic developments and improved living standards. Therefore, it is necessary to find a replacement for fossil energy with renewable energy sources, and the potential to develop is biofuels. Bio-oil, water phase, gas, and char products will be produced by utilizing Spirulina platensis (SPR) microalgae extraction residue as pyrolysis raw material. The purpose of this study is to characterize pyrolysis products and bio-oil analysis with GC-MS. Quality fuel is good if O/C is low, H/C is high, HHV is high, and oxygenate compounds are low, but aliphatic and aromatic are high. Pyrolysis was carried out at a temperature of 300-600°C with a feed of 50 grams in atmospheric conditions with a heating rate of 5-35°C/min, the equipment used was a fixed-bed reactor. The higher the pyrolysis temperature, the higher the bio-oil yield will be to an optimum temperature, then lower. The optimum temperature of pyrolysis is 550°C with a bio-oil yield of 23.99 wt%. The higher the pyrolysis temperature, the higher the H/C, the lower O/C. The optimum condition was reached at a temperature of 500°C with the values of H/C, and O/C is 1.17 and 0.47. With an increase in temperature of 300-600°C, HHV increased from 11.64 MJ/kg to 20.63 MJ/kg, the oxygenate compound decreased from 85.26 to 37.55 wt%. Aliphatics and aromatics increased, respectively, from 5.76 to 36.72 wt% and 1.67 to 6.67 wt%.


ACS Omega ◽  
2021 ◽  
Vol 6 (5) ◽  
pp. 3763-3770
Author(s):  
Hao Yin ◽  
Jie Lu ◽  
Guijian Liu ◽  
Zhiyuan Niu ◽  
Xiangping Zha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document