Impact of severe forest dieback caused by Phytophthora cinnamomi on macrofungal diversity in the northern jarrah forest of Western Australia

2010 ◽  
Vol 259 (5) ◽  
pp. 1033-1040 ◽  
Author(s):  
Prue Anderson ◽  
Mark Brundrett ◽  
Pauline Grierson ◽  
Richard Robinson
2002 ◽  
Vol 50 (1) ◽  
pp. 107 ◽  
Author(s):  
K. L. McDougall ◽  
G. E. St J. Hardy ◽  
R. J. Hobbs

The spatial distribution of Phytophthora cinnamomi Rands at seven dieback sites in the jarrah (Eucalyptus marginata Donn. ex Smith) forest of Western Australia was determined by the following two baiting techniques: in situ baiting with live Banksia grandis Willd. seedlings and ex situ baiting of sampled soil and root material. Four areas within each site were sampled, reflecting dieback age and position in the landscape. Approximate dieback ages of 50, 20 and 5 years were determined by aerial photography. The 50-year-old age class was divided into wet valley floor and dry gravelly slope. Phytophthora cinnamomi was recovered most frequently from the 5-year-old (dieback fronts) and wet 50-year-old areas by both baiting techniques. It was recovered from more than twice as many areas and about five times as many samples when in situ B. grandis baits were used compared with ex situ soil and root baiting. Almost all recoveries from in situ baits were made between October and December. From both methods, it appears that P. cinnamomi has a patchy distribution within dieback sites in the northern jarrah forest. It is easily detected only on dieback fronts and wet valley floors. On dry gravelly sites affected 20 years or more ago, P. cinnamomi is rare and may even be absent at some sites. This makes confident detection of the pathogen difficult. In situ baiting at least allows a temporal component to the sampling and will be a useful method of detection in areas where P. cinnamomi is rare or transient.


2002 ◽  
Vol 50 (3) ◽  
pp. 277 ◽  
Author(s):  
K. L. McDougall ◽  
R. J. Hobbs ◽  
G. E. St Hardy

The vegetation of seven sites in the northern jarrah forest of Western Australia infested with Phytophthora cinnamomi was recorded and compared with adjoining vegetation. The number of species per quadrat was found to be the same in vegetation affected by P. cinnamomi as in healthy vegetation, although there were more species overall in affected vegetation. Vegetation of uninfested sites had a higher cover and more species per quadrat of trees and shrubs and lower cover and fewer species per quadrat of annual plants than vegetation of infested sites. Although many species that are known to be highly susceptible to infection by P. cinnamomi were rare at infested sites, only two (Banksia grandis and Tetratheca hirsuta) were absent from all of the 50-year-old infested parts of sites. Several species that are known to be highly susceptible to infection by P. cinnamomi were as common at infested as at healthy sites. The presence of such species at infested sites and the capacity of P. cinnamomi to infect species it does not kill suggest that this pathogen will persist and continue to influence future vegetation in the jarrah forest.


2005 ◽  
Vol 53 (8) ◽  
pp. 813 ◽  
Author(s):  
K. L. McDougall ◽  
R. J. Hobbs ◽  
G. E. St J. Hardy

The introduced soil-borne pathogen Phytophthora cinnamomi Rands infects and kills a large number of species in the jarrah (Eucalyptus marginata Donn. ex Smith) forest of Western Australia, causing great floristic and structural change. Many of the floristic changes can be explained simply by the known susceptibility of species to infection. Some common species, however, are rarely found at infested sites but are thought to be resistant to infection. It has been postulated that such species may be affected by the change in habitat caused by the death of trees, and not by P. cinnamomi directly. If this were the case, such species should cluster around surviving trees at infested sites. The occurrence of a susceptible species in the vicinity of trees surviving at infested sites has also been reported. To investigate the spatial relationship between trees and understorey species, the positions of trees and selected perennial understorey species were mapped at two sites in jarrah forest long-affected by P. cinnamomi. Random sets of plants and trees were generated and used in simulations to test whether understorey species grew closer to trees than expected. Many understorey species, both resistant and susceptible to infection by P. cinnamomi, were found to grow closer than expected to trees currently growing at the sites and closer to the trees that would have been present at the time of infestation. This suggests that not only do these trees enable some resistant species to persist at infested sites but that they also offer protection to some susceptible species against damage by P. cinnamomi. The proximity of many understorey species to trees that are likely to have appeared at the study sites since the first infestation indicates that the maintenance and enhancement of tree cover at infested sites in the jarrah forest may limit the damage caused by P. cinnamomi and assist in the protection of biodiversity.


1985 ◽  
Vol 12 (3) ◽  
pp. 461 ◽  
Author(s):  
I Abbott ◽  
PV Heurck

A study of foraging by 10 bird species suggests that selective logging of large Eucalyptus marginata will only have affected Melithreptus lunatus, but that proposed silvicultural treatments, including removal of Banksia grandis, may affect several other bird species.


1982 ◽  
Vol 30 (2) ◽  
pp. 139 ◽  
Author(s):  
WM Blowes ◽  
WA Heather ◽  
N Malajczuk ◽  
SR Shea

Native forest at Durras in south-eastern New South Wales and Jarrahdale in south-western Western Australia was examined for the presence of Phytophthora cinnamomi by two sampling and isolation techniques. With the lupin seeding baiting technique, randomly selected samples of soil and fine roots collected from the New South Wales site yielded P. cinnamomi when baited, while similar baiting of comparable samples from Western Australia failed. Direct plating of samples of upper roots and root collars of recently dead Banksia grandis from Western Australian sites yielded P. cinnamomi, while this organism was not isolated from comparable samples of chlorotic Macrozamia communis collected at the New South Wales site. The results suggest that the form of occurrence of P. cinnamomi and its association with disease in Australia vary in different situations. Viewing each situation independently might ensure the adoption of control/prevention strategies appropriate to all.


Plant Disease ◽  
2009 ◽  
Vol 93 (3) ◽  
pp. 215-223 ◽  
Author(s):  
Treena I. Burgess ◽  
Janet L. Webster ◽  
Juanita A. Ciampini ◽  
Diane White ◽  
Giles E. StJ. Hardy ◽  
...  

For 30 years, large-scale aerial photography has been used to map the extent of Phytophthora dieback disease in native forests in the southwest of Western Australia, with validation of the observations involving routine testing of soil and root samples for the presence of Phytophthora cinnamomi. In addition to P. cinnamomi, six morpho-species have been identified using this technique: P. citricola, P. megasperma, P. cryptogea, P. drechsleri, P. nicotianae, and P. boehmeriae. In recent years, many new Phytophthora species have been described worldwide, often with similar morphology to existing species; thus, as many of the isolates collected in Western Australia have been difficult to identify based on morphology, molecular identification of the morpho-species is required. Based on amplification of the internal transcribed spacer (ITS) region of the rDNA gene, sequence data of more than 230 isolates were compared with those of existing species and undescribed taxa. P. inundata, P. asparagi, P. taxon PgChlamydo, P. taxon personii, and P. taxon niederhauserii were identified based on sequence data. Phylogenetic analysis revealed that nine potentially new and undescribed taxa can be distinguished. Several of the new taxa are morphologically indistinguishable from species such as P. citricola, P. drechsleri, and P. megasperma. In some cases, the new taxa are closely related to species with similar morphology (e.g., P.sp.4 and P. citricola). However, the DNA sequences of other new taxa such as P.sp.3 and P.sp.9 show that they are not closely related to morphologically similar species P. drechsleri and P. megasperma, respectively. Most of the new taxa have been associated with dying Banksia spp., while P.sp.2 and P.sp.4 have also been isolated from dying Eucalyptus marginata (jarrah). Some taxa (P.sp.3, 6, and 7) appear to have limited distribution, while others like P.sp.4 are widespread.


Sign in / Sign up

Export Citation Format

Share Document