Forest floor chemistry and mineral soil ion exposure after surface application of alkaline-treated biosolids under two white spruce (Picea glauca) plantations in Nova Scotia, Canada

2018 ◽  
Vol 417 ◽  
pp. 208-221 ◽  
Author(s):  
Kevin Keys ◽  
David L. Burton ◽  
G.W. Price ◽  
Peter N. Duinker
2018 ◽  
Vol 48 (4) ◽  
pp. 324-332 ◽  
Author(s):  
Nicola A. Kokkonen ◽  
S. Ellen Macdonald ◽  
Ian Curran ◽  
Simon M. Landhäusser ◽  
Victor J. Lieffers

Given a seed source, the quality of available substrates is a key factor in determining the success of white spruce (Picea glauca (Moench) Voss) natural regeneration. We examined the influence of substrate and competing vegetation on survival and growth of natural regeneration of white spruce up to 4 years following harvesting in deciduous-dominated upland boreal mixedwood sites. Feather moss, thick soil surface organic layers, litter, and solid wood were poor substrates for establishment. Early successional mosses establishing on mineral soil, thin organics, and rotten wood were generally favourable microsites but were not highly available on postharvest sites. Mineral soil substrates were not as suitable as expected, likely because on a postlogged site, they are associated with unfavourable environmental characteristics (e.g., low nutrient availability, exposure). There was some evidence that survival and growth of seedlings were improved by surrounding vegetation in the first years, but heavy competing vegetation had a negative impact on older seedlings. Burial by aspen litter greatly increased seedling mortality, especially when combined with a brief period of submergence due to heavy spring snowmelt. The results provide insight into conditions under which natural regeneration could be an option for establishing white spruce following harvesting of deciduous-dominated boreal mixedwood forests.


Author(s):  
G. F. Laundon

Abstract A description is provided for Pucciniastrum americanum. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: Pycnia and aecia on Picea glauca (=P. canadensis), uredia and telia on Rubus idaeus (incl. R. strigosus) and R. leucodermis (raspberries). DISEASE: Needle rust of white spruce. Late leaf rust or late yellow rust of raspberry, infecting canes, leaves, petioles, calyces and fruits. GEOGRAPHICAL DISTRIBUTION: Canada and U.S.A. (widely distributed, recorded from British Columbia, Connecticut, Idaho, Illinois, Iowa, Mass., Md, Me, Montana, North Dakota, New Hamp., New Jersey, Nova Scotia, New York, Ohio, Ontario, Quebec, Vermont, Wisconsin, West Virginia). TRANSMISSION: Although the basidiospores infect Picea glauca (white spruce) (Darker, 1929) in some areas they probably play little part in the life cycle on raspberry since this rust is found on the latter host year after year in regions remote from any spruce trees (Anderson, 1956).


1989 ◽  
Vol 19 (12) ◽  
pp. 1648-1650 ◽  
Author(s):  
Elizabeth Anne France ◽  
Dan Binkley ◽  
David Valentine

After 27 years of stand development, the accumulated forest floor under replicated plots of white pine (Pinusstrobus L.), white spruce (Piceaglauca (Moench) Voss), paper birch (Betulapapyrifera Marsh.), and silver maple (Acersaccharinum L.) ranged from 240 g/m2 under maple to 3680 g/m2 under white pine. Forest floor pH ranged from a low under maple of 3.7 to a high under white spruce of 5.9. No significant differences were found in pH in 0–15 cm depth mineral soil; however, substantial differences in the acid neutralization capacities were evident among species, with soils under maple showing the lowest capacity to resist further acidification.


2012 ◽  
Vol 88 (03) ◽  
pp. 306-316 ◽  
Author(s):  
Richard Kabzems

Declines in forest productivity have been linked to losses of organic matter and soil porosity. To assess how removal of organic matter and soil compaction affect short-term ecosystem dynamics, pre-treatment and year 1, 5 and 10 post-treatment soil properties and post-treatment plant community responses were examined in a boreal trembling aspen (Populus tremuloidesMichx.)-dominated ecosystem in northeastern British Columbia. The experiment used a completely randomized design with three levels of organic matter removal (tree stems only; stems and slash; stems, slash and forest floor) and three levels of soil compaction (none, intermediate [2-cm impression], heavy [5-cm impression]). Removal of the forest floor initially stimulated aspen regeneration and significantly reduced height growth of aspen (198 cm compared to 472–480 cm) as well as white spruce (Picea glauca [Moench] Voss) height (82 cm compared to 154–156 cm). The compaction treatments had no effect on aspen regeneration density. At Year 10, heights of both aspen and white spruce were negatively correlated with upper mineral soil bulk density and were lowest on forest floor + whole tree removal treatments. Recovery of soil properties was occurring in the 0 cm to 2 cm layer of mineral soil. Bulk density values for the 0 cm to 10 cm depth remained above 86% of the maximum bulk density for the site, a soil condition where reduced tree growth can be expected.


1989 ◽  
Vol 19 (11) ◽  
pp. 1389-1396 ◽  
Author(s):  
C. T. Dyrness ◽  
K. Van Cleve ◽  
J. D. Levison

Soil chemical properties were studied after a wildfire in stands of white spruce (Piceaglauca (Moench) Voss), black spruce (Piceamariana (Mill.) B.S.P.), paper birch (Betulapapyrifera Marsh.), and quaking aspen (Populustremuloides Michx.). Samples of the forest floor and surface 5 cm of mineral soil were collected from burned sites and unburned controls and analyzed soon after the fire. With the exception of soil pH, effects of the fire on soil chemistry differed among the four forest types. Generally, amounts of exchangeable K, Ca, and Mg did not appreciably increase in the forest floor and surface mineral soil except in heavily burned areas in white spruce and black spruce. Fire reduced amounts of N by about 50% in white spruce, aspen, and birch forest floors. In black spruce, quantities of N were slightly higher in heavily burned locations. Forest floor C:N ratios were substantially lower in heavily burned locations in white spruce and black spruce than in unburned controls. Burning did not have a marked influence on supplies of available P in the forest floor, except in heavily burned black spruce, where average amounts were 12.50 g/m2 versus only 0.46 g/m2 in the control. Burning caused more moderate gains in available P in surface mineral soils under aspen and white spruce. We concluded that fire caused marked short-term changes in soil chemistry in the four forest types. How long these changes will persist is unknown.


2006 ◽  
Vol 36 (6) ◽  
pp. 1597-1609 ◽  
Author(s):  
Vernon S Peters ◽  
S Ellen Macdonald ◽  
Mark RT Dale

The timing of white spruce regeneration in aspen (Populus tremuloides Michx.) – white spruce (Picea glauca (Moench) Voss) boreal mixedwood stands is an important factor in stand development. We examined boreal mixedwood stands representing a 59-year period of time since fire and determined (1) whether and when a delayed regeneration period of white spruce occurred, (2) whether the relative abundance of initial (<20 years) versus delayed (≥20 years postfire) regeneration is related to seed availability at the time of the fire, and (3) what are the important regeneration substrates for initial versus delayed regeneration. Initial regeneration occurred primarily on mineral soil or humus, while delayed regeneration established primarily on logs and peaked 38–44 years after fire. Of the 20 stands investigated, seven were dominated by initial regeneration, six were dominated by delayed regeneration, and seven were even mixtures of both. The dominance of a site by initial or delayed regeneration could not be simply explained by burn timing relative to mast years or distance to seed source; our results suggested that fire severity and the competitive influence of initial regeneration on delayed regeneration were important at fine scales. Based on our results we describe several possible postfire successional pathways for boreal mixedwood forests.


2001 ◽  
Vol 77 (6) ◽  
pp. 1006-1013 ◽  
Author(s):  
James D. Stewart ◽  
Simon M. Landhäusser ◽  
Kenneth J. Stadt ◽  
Victor J. Lieffers

Successful mixedwood management in the boreal forest of Alberta requires better knowledge of the occurrence and success of natural white spruce regeneration. In this study we developed statistical models to predict the natural establishment and height growth of understory white spruce (Picea glauca (Moench) Voss) in the boreal mixedwood forest in Alberta using data from 148 provincial permanent sample plots, supplemented by measurements of the amount and height growth of regenerating white spruce, and the amount and type of available substrate. A discriminant model correctly classified 73% of the sites as to presence or absence of a white spruce understory based on the amount of spruce basal area, rotten wood, ecological nutrient regime, soil clay fraction and elevation, although it explained only 30% of the variation in the data. On sites with a white spruce understory, a regression model related the abundance of regeneration to rotten wood cover, spruce basal area, pine basal area, soil clay fraction, and grass cover (R2 = 0.36). About half of the seedlings surveyed grew on rotten wood, and only 3% on mineral soil, and seedlings were 10 times more likely to have established on these substrates than on litter. Exposed mineral soil was rare, covering only 0.3% of the observed transect area, rotten wood covered 4.5%, and litter/undisturbed forest floor covered the remainder. The regression models developed for average relative height growth rate included feather moss cover, stand age and birch basal area for seedlings ≤ 1 m (R2 = 0.23), and feather moss cover, elevation, other moss cover and soil clay fraction for seedlings between 1 m and 3 m (R2 = 0.27). Key words: Picea glauca, seedling establishment, seedbeds, site factors, coarse woody debris, predictive models, mixedwood management


2003 ◽  
Vol 33 (4) ◽  
pp. 672-681 ◽  
Author(s):  
Marie-Josée Simard ◽  
Yves Bergeron ◽  
Luc Sirois

Most conifer seeds die as seeds or seedlings within 5 years after dispersal. Understanding what factors keep a few of them alive is essential if natural regeneration is to be maintained in managed forests. For example, decaying logs and the conifer seedlings that often grow on them are rare under certain canopies such as deciduous trembling aspen (Populus tremuloides Michx.). We conducted a seeding experiment to evaluate the role of certain substrates, and litterfall, on early conifer survivorship. Seeds of balsam fir (Abies balsamea (L.) Mill.), white spruce (Picea glauca (Moench) Voss), and eastern white-cedar (Thuja occidentalis L.) were sown during 2 consecutive years on mineral soil, relocated logs, and litter in deciduous aspen and coniferous (Thuja occidentalis dominated) stands. Seedling survivor ship was monitored at the end of the first growing season and 1 year after each sowing. Conifer seedling survivorship was equivalent or greater under aspen than under cedar-dominated canopies. Picea and Thuja survivorship was highest on decaying logs of approximately 9 cm high (compared with logs buried at forest floor level) and lowest on forest floor litter during both the first growing season and the following autumn–winter. Abies survivorship was little affected by substrate type, except for low autumn–winter survival on litter. Thuja autumn–winter survival was significantly reduced by litterfall in both deciduous and coniferous stands.


1993 ◽  
Vol 23 (5) ◽  
pp. 956-963 ◽  
Author(s):  
K.M. Klingensmith ◽  
K. Van Cleve

Forest floors and mineral soils from early (open willow), middle (poplar–alder), and late (white spruce) floodplain primary successional stages were examined for nitrogen fixation and denitrification. The acetylene-reduction and acetylene-inhibition techniques were used separately and in combination to measure nitrogenase and denitrification activities, both in laboratory and field studies. In situ N2O production was undetectable at all sites and during all sampling periods. Denitrifying activity measured in the field with acetylene amendments was low to undetectable, except after a brief flood in the open willow stand when N2O production ranged from undetectable to 34 ng N•cm−2•h−1 within the newly deposited alluvium–old mineral soil interface. Intact core assays also had low to undetectable denitrification activities; the highest activities (259 ng N•g−1 h−1) were measured in the poplar–alder forest floor in the fall. Laboratory studies showed that potential denitrification enzyme activity (DEA) was also greatest in the poplar–alder forest floor (4332 ng N•g−1•h−1), once again occurring in the fall. In early and midsuccessional stages, the interactive effects of temperature, carbon, and NO3− limited denitrification, yet even with the addition of the limiting amendments, low to undetectable DEA was observed in mineral soils. The later white spruce successional stage also had low to undetectable DEA, increasing only with the addition of the full DEA media and independent of temperature changes. Nonsymbiotic nitrogenase activities were highly variable, ranging from undetectable to 30 ng N•cm−2•h−1. Highest activities were seen in the open willow, newly deposited alluvium–old mineral soil interface immediately after a flood and approximately 1 month after the flood on the newly deposited silt surface. Only the white spruce forest floor had measurable nonsymbiotic nitrogenase activity at all sampling times. Alder root nodule nitrogenase activity showed no significant differences between sampling periods. The estimated annual nitrogen fixation rate of 164 kg N•ha−1 for alder root nodules is a substantial N contribution to the alder stand and to the floodplain ecosystem in general.


2005 ◽  
Vol 35 (3) ◽  
pp. 667-673 ◽  
Author(s):  
G. Geoff Wang ◽  
Kevin J Kemball

Experimental seeding of balsam fir (Abies balsamea (L.) Mill.) and white spruce (Picea glauca (Moench) Voss) was implemented in three mature trembling aspen (Populus tremuloides Michx.) stands in southeastern Manitoba to test (i) the effect of vegetation (light) competition and seedbed type (undisturbed forest floor, exposed mineral soil, and rotten logs) on seedling recruitment over the first 2 years and (ii) the effect of broadleaf litter exclusion on seedling mortality during the first winter. The study indicated that, with adequate seed supply, seedbed type was the most important factor limiting seedling recruitment, especially the recruitment of white spruce, in trembling aspen stands. Seedling recruitment on the best and the worst seedbeds differed by 1.8 times for balsam fir but by 19 times for white spruce. Significant differences in soil moisture and temperature were found between seedbed types. Broadleaf litter exclusion also facilitated the recruitment of balsam fir and white spruce, but only on undisturbed forest floor. Vegetation (light) competition, however, did not limit seedling recruitment. On the contrary, the presence of understory vegetation benefited seedling recruitment on rotten logs. Compared with white spruce, balsam fir is better adapted to regenerate in trembling aspen stands. Balsam fir was about 4, 12, and 36 times better than white spruce when regenerating on exposed mineral soil, rotten log, and undisturbed forest floor, respectively.


Sign in / Sign up

Export Citation Format

Share Document