The effect of wildfire on soil chemistry in four forest types in interior Alaska

1989 ◽  
Vol 19 (11) ◽  
pp. 1389-1396 ◽  
Author(s):  
C. T. Dyrness ◽  
K. Van Cleve ◽  
J. D. Levison

Soil chemical properties were studied after a wildfire in stands of white spruce (Piceaglauca (Moench) Voss), black spruce (Piceamariana (Mill.) B.S.P.), paper birch (Betulapapyrifera Marsh.), and quaking aspen (Populustremuloides Michx.). Samples of the forest floor and surface 5 cm of mineral soil were collected from burned sites and unburned controls and analyzed soon after the fire. With the exception of soil pH, effects of the fire on soil chemistry differed among the four forest types. Generally, amounts of exchangeable K, Ca, and Mg did not appreciably increase in the forest floor and surface mineral soil except in heavily burned areas in white spruce and black spruce. Fire reduced amounts of N by about 50% in white spruce, aspen, and birch forest floors. In black spruce, quantities of N were slightly higher in heavily burned locations. Forest floor C:N ratios were substantially lower in heavily burned locations in white spruce and black spruce than in unburned controls. Burning did not have a marked influence on supplies of available P in the forest floor, except in heavily burned black spruce, where average amounts were 12.50 g/m2 versus only 0.46 g/m2 in the control. Burning caused more moderate gains in available P in surface mineral soils under aspen and white spruce. We concluded that fire caused marked short-term changes in soil chemistry in the four forest types. How long these changes will persist is unknown.

1983 ◽  
Vol 13 (5) ◽  
pp. 879-893 ◽  
Author(s):  
C. T. Dyrness ◽  
Rodney A. Norum

Seven units (about 2 ha each) of black spruce – feather moss forest were experimentally burned over a range of fuel moisture conditions during the summer of 1978. Surface woody fuels were sparse and the principal carrier fuel was the forest floor (largely mosses and their decomposition products). Forest floors after burning comprised a small-scale mosaic of unburned, scorched, lightly burned, moderately burned, and heavily burned (organic materials entirely consumed) conditions. Percentage of the unit area in the moderately and heavily burned condition ranged from 11.2 to 77.2% and percent decrease in forest-floor thickness varied from 27.4 to 63.1% in the seven units. Forest-floor consumption was most closely correlated with the moisture content of lower moss (01 horizon) and lower duff layers (022 horizon) at the time of burning. For the first 3 years after fire, biomass production was greater on heavily burned than on lightly burned sites (58 vs. 37 g/m2 on an annual basis). Heavily burned sites were completely dominated by the invading species Epilobiumangustifolium L., Ceratodonpurpureus (Hedw.) Brid., and Marchantiapolymorpha L., whereas lightly burned plots were occupied by sprouting species such as Calamagrostiscanadensis (Michx.) Beauv., Vacciniumuliginosum L., and Ledumgroenlandicum Oeder. Soil pH and amounts of total P and available P in the forest floor increased significantly as a result of burning; and in all cases, increases reached a maximum in moderately and heavily burned areas. Total N in the forest floor increased significantly in moderately burned, but decreased slightly in heavily burned areas. Total N and total P showed smaller increases in the surface mineral soil as a result of burning. Supplies of available P in the mineral soil increased almost 4-fold in moderately burned and over 16-fold in heavily burned areas.


1989 ◽  
Vol 19 (12) ◽  
pp. 1648-1650 ◽  
Author(s):  
Elizabeth Anne France ◽  
Dan Binkley ◽  
David Valentine

After 27 years of stand development, the accumulated forest floor under replicated plots of white pine (Pinusstrobus L.), white spruce (Piceaglauca (Moench) Voss), paper birch (Betulapapyrifera Marsh.), and silver maple (Acersaccharinum L.) ranged from 240 g/m2 under maple to 3680 g/m2 under white pine. Forest floor pH ranged from a low under maple of 3.7 to a high under white spruce of 5.9. No significant differences were found in pH in 0–15 cm depth mineral soil; however, substantial differences in the acid neutralization capacities were evident among species, with soils under maple showing the lowest capacity to resist further acidification.


1986 ◽  
Vol 16 (6) ◽  
pp. 1320-1326 ◽  
Author(s):  
K. Van Cleve ◽  
O. W. Heal ◽  
D. Roberts

Using a bioassay approach, this paper considers the nitrogen-supplying power of forest floors from examples of the major forest types in interior Alaska. Yield and net N uptake by paper birch seedlings grown in standardized mixtures of quartz sand and forest floor organic matter, and separate incubation estimates of N mineralization and nitrification for the forest floors, were employed to evaluate potential N supply. Black spruce and floodplain white spruce forest floors supplied only one-fifth the amount of N taken up by seedlings growing in other forest floors. Incubation estimates showed these forest floors yielded 4 and 15 times less extractable N, respectively, than the more fertile birch forest floors. In comparison with earlier estimates of P supply from these same forest floors, the upland types showed greater deficiency of N whereas floodplain types showed greater deficiency of P in control of seedling yield. The latter condition is attributed to the highly calcareous nature of the floodplain mineral soil, the consequent potential for P fixation, and hence greater potential deficiency of the element compared with N in mineralizing forest floors. Nitrogen concentration of the forest floors was the best predictor of bioassay response.


1983 ◽  
Vol 13 (5) ◽  
pp. 747-766 ◽  
Author(s):  
Keith Van Cleve ◽  
Lola Oliver ◽  
Robert Schlentner ◽  
Leslie A. Viereck ◽  
C. T. Dyrness

This paper considers the productivity and nutrient cycling in examples of the major forest types in interior Alaska. These ecosystem properties are examined from the standpoint of the control exerted over them by soil temperature and forest-floor chemistry. We conclude that black spruce Piceamariana (Mill.) B.S.P. occupies the coldest, wettest sites which support tree growth in interior Alaska. Average seasonal heat sums (1132 ± 32 degree days (DD)) for all other forest types were significantly higher than those encountered for black spruce (640 ± 40 DD). In addition, black spruce ecosystems display the highest average seasonal forest-floor and mineral-soil moisture contents. Forest-floor chemistry interacts with soil temperature in black spruce to produce the most decay-resistant organic matter. In black spruce the material is characterized by the highest lignin content and widest C/N (44) and C/P (404) ratios. Across the range of forest types examined in this study, soil temperature is strongly related to net annual aboveground tree production and the annual tree requirement for N, P, K, Ca, and Mg. Forest floor C/N and C/P ratios are strongly related to annual tree N and P requirement and the C/N ratio to annual tree production. In all cases these controls act to produce, in black spruce, the smallest accumulation of tree biomass, standing crop of elements, annual production, and element requirement in aboveground tree components.


1986 ◽  
Vol 3 (1) ◽  
pp. 16-18 ◽  
Author(s):  
John Zasada ◽  
Rodney Norum

Abstract Broadcast burning following harvesting on flood-plain sites in Alaska substantially decreased residual organic material and increased exposed mineral soil. Two forest types were studied: white spruce/alder/feathermoss and white spruce/alder/lingenberry/feathermoss. The latter site contained permafrost. Fuel was reduced 67% and 81%, respectively; organic horizon thickness was decreased 43% to 2.9 in (7.4 cm) and 55% to 2.5 in (6.4 cm), respectively; and mineral soil exposure was 13% and 8%, respectively. Burning created good conditions for planting on both types. In addition, mechanical site preparation to increase mineral soil exposure appears to be necessary to achieve adequate, well-distributed regeneration from seed. North. J. Appl. For. 3:16-18, Mar. 1986.


2012 ◽  
Vol 88 (03) ◽  
pp. 306-316 ◽  
Author(s):  
Richard Kabzems

Declines in forest productivity have been linked to losses of organic matter and soil porosity. To assess how removal of organic matter and soil compaction affect short-term ecosystem dynamics, pre-treatment and year 1, 5 and 10 post-treatment soil properties and post-treatment plant community responses were examined in a boreal trembling aspen (Populus tremuloidesMichx.)-dominated ecosystem in northeastern British Columbia. The experiment used a completely randomized design with three levels of organic matter removal (tree stems only; stems and slash; stems, slash and forest floor) and three levels of soil compaction (none, intermediate [2-cm impression], heavy [5-cm impression]). Removal of the forest floor initially stimulated aspen regeneration and significantly reduced height growth of aspen (198 cm compared to 472–480 cm) as well as white spruce (Picea glauca [Moench] Voss) height (82 cm compared to 154–156 cm). The compaction treatments had no effect on aspen regeneration density. At Year 10, heights of both aspen and white spruce were negatively correlated with upper mineral soil bulk density and were lowest on forest floor + whole tree removal treatments. Recovery of soil properties was occurring in the 0 cm to 2 cm layer of mineral soil. Bulk density values for the 0 cm to 10 cm depth remained above 86% of the maximum bulk density for the site, a soil condition where reduced tree growth can be expected.


1979 ◽  
Vol 57 (23) ◽  
pp. 2644-2656 ◽  
Author(s):  
C. T. Dyrness ◽  
D. F. Grigal

Five distinct forest communities were recognized along a 3-km transect. These are, listed in order of decreasing elevation: (i) open black spruce/feathermoss - Cladonia, (ii) closed black spruce/feathermoss, (iii) open black spruce/Sphagnum, (iv) black spruce woodland/Eriophorum, and (v) white spruce/alder/Calamagrostis (restricted to a narrow band adjacent to a stream). Several techniques of ordination were used to recognize these five forest communities plus two intergrades: (open black spruce/feathermoss - Cladonia) - (Sphagnum) and open black spruce/Sphagnum - woodland/Eriophorum.The distribution of two-thirds of the plant species was highly correlated with vegetation–slope zones. Results of the fit of Gaussian curves also suggest that vegetation boundaries were well placed. The distribution of the four soil series in the area was well correlated with vegetation–slope zones: three were limited to one zone each. Permafrost, absent from the soil on the ridgetop and upper slope, was generally within 40 to 50 cm of the surface elsewhere and tended to be at shallower depths as elevation decreased. The most striking differences in forest floor properties were found in the white spruce zone compared with the six black spruce dominated zones. The white spruce forest floor was markedly thinner and had higher levels of nutrients. In the six black spruce dominated zones, forest floor thickness and concentrations of N and Mg tended to increase with distance downslope, and P and K decreased.


1985 ◽  
Vol 15 (1) ◽  
pp. 156-162 ◽  
Author(s):  
K. Van Cleve ◽  
F. Harrison

This paper considers the extent to which phosphorus (P) supply for plant use is controlled by the chemical quality of forest floor organic matter, independent of climate. Using plant bioassays, forest floor materials from representative examples of each of the major forest types in interior Alaska were examined for nutrient supplying power. The work supports conclusions reached in earlier studies which indicated that black spruce forest floors were highly nutrient limited compared with those of other interior Alaska forest types. In addition, floodplain white spruce forests may experience marked P deficiency because of dilution of the element by periodic siltation. Potential phosphorus supply for seedling growth was best described by P concentration of the rooting medium. The supply also was related to the concentrations of lignin and tannin which control forest floor decomposition and recycling of P within the microbial population.


Sign in / Sign up

Export Citation Format

Share Document